•  


GitHub - MVIG-SJTU/RMPE: RMPE: Regional Multi-person Pose Estimation, forked from Caffe. Research purpose only.
Skip to content

RMPE: Regional Multi-person Pose Estimation, forked from Caffe. Research purpose only.

License

Notifications You must be signed in to change notification settings

MVIG-SJTU/RMPE

Repository files navigation

RMPE: Regional Multi-person Pose Estimation

By Hao-Shu Fang , Shuqin Xie, Yu-Wing Tai, Cewu Lu .

New version AlphaPose is released. The accuracy is 10 mAP higher than this repo. Please move to https://github.com/MVIG-SJTU/AlphaPose

RMPE is a two steps framework for the task of multi-person pose estimation. You can use the code to train/evaluate a model for pose estimation task. For more details, please refer to our arxiv paper .

RMPE Framework

Results

Video results available here

Results on MPII dataset:

Method MPII full test mAP s/frame
Iqbal & Gall, ECCVw'16 43.1 10
DeeperCut, ECCV16 59.5 485
RMPE 76.7 1.5
Results on COCO test-dev 2015:
Method AP @0.5:0.95 AP @0.5 AP @0.75
RMPE 61.8 83.7 69.8

Contents

  1. Installation
  2. Preparation
  3. Demo
  4. Train/Eval
  5. Citation
  6. Acknowledgements

Installation

  1. Get the code. We will call the directory that you cloned Caffe into $CAFFE_ROOT
git clone https://github.com/MVIG-SJTU/RMPE.git
cd
 RMPE

you can also download code from

git clone https://github.com/Fang-Haoshu/RMPE.git
  1. Build the code. Please follow Caffe instruction to install all necessary packages and build it.
#
 Modify Makefile.config according to your Caffe installation.

#
 Note that the SSTN module currently ONLY have GPU implementation so you need to make&run it with GPU

cp Makefile.config.example Makefile.config
make -j8
#
 Make sure to include $CAFFE_ROOT/python to your PYTHONPATH.

make py
make 
test
 -j8
make runtest -j8
#
 If you have multiple GPUs installed in your machine, make runtest might fail. If so, try following:

export
 CUDA_VISIBLE_DEVICES=0
;
 make runtest -j8
#
 If you have error: "Check failed: error == cudaSuccess (10 vs. 0)  invalid device ordinal",

#
 first make sure you have the specified GPUs, or try following if you have multiple GPUs:

unset
 CUDA_VISIBLE_DEVICES

Preparation

For demo only

  1. Download pre-trained human detector( Google drive | Baidu cloud ) and SPPE+SSTN caffe model( Google drive | Baidu cloud ). By default, we assume the models are stored in $CAFFE_ROOT/models/VGG_SSD/ and $CAFFE_ROOT/models/SPPE/ accordingly.

For train/eval

This part of our model is implemented in Torch7. Please refer to this repo for more details.

Demo

Our experiments use both Caffe and Torch7. But we implement the whole framework in Caffe so you can run the demo easily. Note: The current caffe model of SPPE use the 2-stacked hourglass network which has a lower precision. We will be grateful if anyone can help to transfer new torch model to caffe.

  1. Run the ipython notebook. It will show you how our whole framework works
cd
 $CAFFE_ROOT

#
 it shows how our framework works

jupyter notebook examples/rmpe/Regional
\ 
Multi-person
\ 
Pose
\ 
Estimation.ipynb
  1. Run the python program for more results
python examples/rmpe/demo.py

Train/Eval

  1. Train SPPE+SSTN. This part of our model is implemented in Torch7. Please refer to this repo for more details. We will call the directory that you cloned the repo into $SPPE_ROOT . I have written an implementation in Caffe. You can email me for the script.

  2. Evaluate the model. You can modify line 45 in demo.py to evaluate our framework on whole test set. But the results will be different. To reproduce our results reported in our paper:

#
 First get the result of human detector

cd
 $CAFFE_ROOT

jupyter notebook examples/rmpe/human_detection.ipynb
#
 Then move the results to $SPPE_ROOT/predict/annot/

mv examples/rmpe/mpii-test0.09 
$SPPE_ROOT
/predict/annot/
#
 Next, do single person human estimation

cd
 $SPPE_ROOT
/predict
th main.lua predict-test
#
Finally, do pose NMS

python batch_nms.py
#
our result is stored in txt format, to evaluate, Download MPII toolkit and put it in current directory

matlab
#
In matlab

setpred
()

Citation

Please cite the paper in your publications if it helps your research:

@inproceedings{fang2017rmpe,
  title={{RMPE}: Regional Multi-person Pose Estimation},
  author={Fang, Hao-Shu and Xie, Shuqin and Tai, Yu-Wing and Lu, Cewu},
  booktitle={ICCV},
  year={2017}
}

Acknowledgements

Thanks to Wei Liu , Alejandro Newell , Pfister, T. , Kaichun Mo , Maxime Oquab for contributing their codes. Thanks to the authors of Caffe and Torch7!

- "漢字路" 한글한자자동변환 서비스는 교육부 고전문헌국역지원사업의 지원으로 구축되었습니다.
- "漢字路" 한글한자자동변환 서비스는 전통문화연구회 "울산대학교한국어처리연구실 옥철영(IT융합전공)교수팀"에서 개발한 한글한자자동변환기를 바탕하여 지속적으로 공동 연구 개발하고 있는 서비스입니다.
- 현재 고유명사(인명, 지명등)을 비롯한 여러 변환오류가 있으며 이를 해결하고자 많은 연구 개발을 진행하고자 하고 있습니다. 이를 인지하시고 다른 곳에서 인용시 한자 변환 결과를 한번 더 검토하시고 사용해 주시기 바랍니다.
- 변환오류 및 건의,문의사항은 juntong@juntong.or.kr로 메일로 보내주시면 감사하겠습니다. .
Copyright ⓒ 2020 By '전통문화연구회(傳統文化硏究會)' All Rights reserved.
 한국   대만   중국   일본