한국   대만   중국   일본 
Prokaryotes: The unseen majority -- Whitman et al. 95 (12): 6578 -- Proceedings of the National Academy of Sciences
The Wayback Machine - https://web.archive.org/web/20080305184844/http://www.pnas.org:80/cgi/content/full/95/12/6578
 Keystone Symposia 2008 Conference Schedule  Sign up for PNAS Online eTocs
Link: Info for AuthorsLink: Editorial BoardLink: AboutLink: SubscribeLink: AdvertiseLink: ContactLink: Sitemap Link: PNAS Home
Proceedings of the National Academy of Sciences
Link: Current Issue "" Link: Archives "" Link: Online Submission ""   Link: Advanced Search



  Previous Article    | Table of Contents |    Next Article  

Vol. 95, Issue 12, 6578-6583, June 9, 1998

Perspective
Prokaryotes: The unseen majority

William B. Whitman * , dagger , David C. Coleman Dagger , and William J. Wiebe §

Departments of *  Microbiology, Dagger  Ecology, and §  Marine Sciences, University of Georgia, Athens GA 30602

This Article
Right arrow Abstract Freely available
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Right arrow Citation Map
Services
Right arrow Email this article to a colleague
Right arrow Similar articles in this journal
Right arrow Similar articles in ISI Web of Science
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Add to My File Cabinet
Right arrow Download to citation manager
Right arrow Request Copyright Permission
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via CrossRef
Right arrow Citing Articles via ISI Web of Science (399)
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Whitman, W. B.
Right arrow Articles by Wiebe, W. J.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Whitman, W. B.
Right arrow Articles by Wiebe, W. J.
GeoRef
Right arrow GeoRef Citation
Social Bookmarking
 Add to CiteULike   Add to Complore   Add to Connotea   Add to Del.icio.us   Add to Digg  
What's this?
    ABSTRACT
Top
Abstract
Article
References

The number of prokaryotes and the total amount of their cellular carbon on earth are estimated to be 4-6 × 10 30 cells and 350-550 Pg of C (1 Pg = 10 15 g), respectively. Thus, the total amount of prokaryotic carbon is 60-100% of the estimated total carbon in plants, and inclusion of prokaryotic carbon in global models will almost double estimates of the amount of carbon stored in living organisms. In addition, the earth's prokaryotes contain 85-130 Pg of N and 9-14 Pg of P, or about 10-fold more of these nutrients than do plants, and represent the largest pool of these nutrients in living organisms. Most of the earth's prokaryotes occur in the open ocean, in soil, and in oceanic and terrestrial subsurfaces, where the numbers of cells are 1.2 × 10 29 , 2.6 × 10 29 , 3.5 × 10 30 , and 0.25-2.5 × 10 30 , respectively. The numbers of heterotrophic prokaryotes in the upper 200 m of the open ocean, the ocean below 200 m, and soil are consistent with average turnover times of 6-25 days, 0.8 yr, and 2.5 yr, respectively. Although subject to a great deal of uncertainty, the estimate for the average turnover time of prokaryotes in the subsurface is on the order of 1-2 × 10 3 yr. The cellular production rate for all prokaryotes on earth is estimated at 1.7 × 10 30 cells/yr and is highest in the open ocean. The large population size and rapid growth of prokaryotes provides an enormous capacity for genetic diversity.

    ARTICLE
Top
Abstract
Article
References

Although invisible to the naked eye, prokaryotes are an essential component of the earth's biota. They catalyze unique and indispensable transformations in the biogeochemical cycles of the biosphere, produce important components of the earth's atmosphere, and represent a large portion of life's genetic diversity. Although the abundance of prokaryotes has been estimated indirectly ( 1 , 2 ), the actual number of prokaryotes and the total amount of their cellular carbon on earth have never been directly assessed. Presumably, prokaryotes' very ubiquity has discouraged investigators, because an estimation of the number of prokaryotes would seem to require endless cataloging of numerous habitats.

To estimate the number and total carbon of prokaryotes on earth, several representative habitats were first examined. This analysis indicated that most of the prokaryotes reside in three large habitats: seawater, soil, and the sediment/soil subsurface. Although many other habitats contain dense populations, their numerical contribution to the total number of prokaryotes is small. Thus, evaluating the total number and total carbon of prokaryotes on earth becomes a solvable problem.

Aquatic Environments. Numerous estimates of cell density, volume, and carbon indicate that prokaryotes are ubiquitous in marine and fresh water (e.g., 3-5). Although a large range of cellular densities has been reported (10 4 -10 7 cells/ml), the mean values for different aquatic habitats are surprisingly similar. For the continental shelf and the upper 200 m of the open ocean, the cellular density is about 5 × 10 5 cells/ml. A portion of these cells are the autotrophic marine cyanobacteria and Prochlorococcus spp., which have an average cellular density of 4 × 10 4 cells/ml ( 6 ). The deep (>200 m) oceanic water contains 5 × 10 4 cells/ml on average. From global estimates of volume, the upper 200 m of the ocean contains a total of 3.6 × 10 28 cells, of which 2.9 × 10 27 cells are autotrophs, whereas ocean water below 200 m contains 6.5 × 10 28 cells (Table 1 ).

                              
View this table:
[in this window]
[in a new window]
 
Table 1.   Number of prokaryotes in aquatic habitats

The upper 10 cm of sediment in the open ocean is included in the oceanic habitat because, as a result of animal mixing and precipitation, it is essentially contiguous with the overlying water column. Most of the marine sediment is found in the continental rise and abyssal plain, so the numbers of prokaryotes were calculated from an arithmetic average of the cellular densities in the studies cited by Deming and Baross (ref. 9 ; Table 1 ). The Nova Scotian continental rise was excluded from this calculation because of its unusual hydrology ( 10 ).

There are fewer estimates of the number of prokaryotes in freshwaters and saline lakes ( 5 ). Given an average density of 10 6 cells/ml, the total number of cells in freshwaters and saline lakes is 2.3 × 10 26 . This value is three orders of magnitude below the numbers of prokaryotes in seawater.

In the polar regions, a relatively dense community of algae and prokaryotes forms at the water-ice interface in annual sea ice ( 11 ). In Antarctic sea ice, the estimated number of prokaryotes (2.2 × 10 24 cells) was based on the mean cell numbers of Delille and Rosiers ( 12 ) and the mean areal extent of seasonal ice ( 13 ). If the population size in the Arctic is similar ( 14 ), the global estimate for both polar regions is 4 × 10 24 cells, only a fraction of the total number of prokaryotes.

Soil. Soil is a major reservoir of organic carbon on earth and an important habitat for prokaryotes. Prokaryotes are an essential component of the soil decomposition subsystem, in which plant and animal residues are degraded into organic matter and nutrients are released into food webs ( 15 ). Many studies indicate that the number of prokaryotes in forest soils is much less than the number in other soils. The total number of prokaryotes in forest soil was estimated from detailed direct counts from a coniferous forest ultisol ( 16 ), which were considered representative of forest soils in general (Table 2 ). For other soils, including grasslands and cultivated soils, the numbers of prokaryotes appear about the same, e.g., the number of prokaryotes in Negev desert soil is comparable to the number in cultivated soil ( 19 ). Therefore, the numbers of prokaryotes in all other soils were estimated from the unpublished field studies of E. A. Paul for cultivated soils (cited in ref. 18 ).

                              
View this table:
[in this window]
[in a new window]
 
Table 2.   Number of prokaryotes in soil

Subsurface. The subsurface is defined here as terrestrial habitats below 8 m and marine sediments below 10 cm. Few direct enumerations of subsurface prokaryotes have been made, largely because of the difficulty in obtaining uncontaminated samples. Nevertheless, circumstantial evidence suggests that the subsurface biomass of prokaryotes is enormous ( 20 ). For instance, groundwater from deep aquifers and formation water from petroleum deposits contain 10 3 -10 6 prokaryotic cells/ml ( 21 , 22 ).

Unconsolidated sediments represent most of the marine subsurface and about 20% of the terrestrial subsurface ( 23 ). The number and sizes of subsurface prokaryotes in unconsolidated sediments of the deep ocean and the continental shelf and slope ( 24-30 ) and the terrestrial coastal plain ( 31 , 32 ) have been determined. Because the terrestrial values fall within the range of the marine values, arithmetic averages were calculated to create a depth profile to 600 m (Table 3 ). For deeper sediments to 4 km, the number of prokaryotes was extrapolated from the formula of Parkes et al. ( 33 ). At 4 km, the average temperature reaches 125°C ( 34 ), which is close to the upper temperature limit for prokaryotic life.

                              
View this table:
[in this window]
[in a new window]
 
Table 3.   Total number of prokaryotes in unconsolidated subsurface sediments

Of the 3.8 × 10 30 prokaryotes calculated to be in the unconsolidated subsurface sediments, 97% or 3.7 × 10 30 occur at depths shallower than 600 m (Table 3 ). The estimated number of prokaryotes for deeper sediments is only 0.13 × 10 30 cells. This value is uncertain because it is based on extrapolation. In addition, the accuracy also depends on whether or not the data used to calculate the depth profile are representative of the entire subsurface. Because most of these data were obtained from regions of the Pacific Ocean, the depth profile is likely to be most accurate for those sediments.

The estimated number of terrestrial subsurface prokaryotes (Table 3 , 2.5 × 10 29 ) is a minimum value because it is limited to unconsolidated sediments, which represent only 20% of the terrestrial subsurface. Two other approaches can be used to estimate the total number of terrestrial subsurface prokaryotes. The first approach, originally used by Gold ( 20 ), is based on the assumption that the average porosity of the terrestrial subsurface is 3%. Assuming that the percentage of the total pore space occupied by prokaryotes is 0.016% ( 35 ), the average volume of a subsurface prokaryotic cell is 1.07 × 10 -12 cm 3 ( 36 ), and the volume of the upper 4 km of the terrestrial subsurface is 4.9 × 10 23 cm 3 , the total number of terrestrial subsurface prokaryotes is 2.2 × 10 30 cells. Considering the general nature of these assumptions, the agreement within an order-of-magnitude of the estimate in Table 1 provides some confidence in the latter estimate.

Alternatively, the number of terrestrial subsurface prokaryotes can be estimated from groundwater data. Based on values from seven sites and four studies ( 31 , 37-39 ), the average number of unattached cells in groundwater is 1.54 × 10 5 cells/ml. The total volume of groundwater in the upper 4 km of the earth's surface is 9.5 × 10 21 cm 3 ( 40 ), and thus the number of unattached prokaryotes in groundwater is 1.46 × 10 27 cells. However, the number of prokaryotes in aquifer sediments is probably many orders of magnitude greater than the number unattached in the groundwater per se. For an aquifer 30-200 m deep, only 0.058% of the prokaryotes are unattached (calculated from the data of refs. 31 , 41 , and 42 ). This value appears to be representative of groundwater from other deep aquifers ( 22 , 37 ), which implies that the terrestrial subsurface contains about 2.5 × 10 30 prokaryotic cells. This estimate contains two major uncertainties. First, about 55% of the earth's groundwater is found below 750 m ( 40 ), and the extrapolation of values from the groundwater and aquifers above 750 m may not be applicable. Second, the ratio of unattached prokaryotes in aquifers was calculated from unconsolidated sediments, and the ratio may vary in other types of aquifers where the physical properties of the rocks and sediments are very different.

In summary, the subsurface is a major habitat for prokaryotes, and the number of subsurface prokaryotes probably exceeds the numbers found in other components of the biosphere. The greatest uncertainty is in the estimate for the terrestrial subsurface because this estimate is based on only a few measurements. However, even for the terrestrial subsurface, two independent methods suggest that the number of prokaryotes is very large, about 2.5-25 × 10 29 cells. Thus, the total number of subsurface prokaryotes is probably 3.8-6.0 × 10 30 cells.

Other Habitats. Although they were found not to constitute a large fraction of the total number of prokaryotes, other habitats are of interest in their own right.

Animals. Many vertebrate and invertebrate animals contain dense populations of prokaryotes that play important roles in nutrition and disease. To estimate the total number of prokaryotes on and within animals, the numbers of prokaryotes in each individual animal and the population size of the animal must be known. Unfortunately, these values are only known for a small number of mostly domestic animals.

In mammals and birds, prokaryotes are abundant on the skin and within the gastrointestinal tract. Within the gastrointestinal tract, most of the prokaryotes are anaerobes in the colon, cecum, or rumen ( 43 , 44 ), and the total number found within animals whose population sizes are known can be readily calculated (Table 4 ). For comparison, the numbers of prokaryotes on the skin of humans can be calculated. The density of prokaryotes is about 10 3 -10 4 cells/cm 2 , except in the groin and axilla, where it is 10 6 cells/cm 2 ( 57 ). Based on the surface area of an adult ( 58 ), the total number of prokaryotes on the skin of an individual is about 3 × 10 8 cells, a value far below the number of prokaryotes in the colon (Table 4 ).

                              
View this table:
[in this window]
[in a new window]
 
Table 4.   Total number of prokaryotes in some representative animals

Insects, such as termites, cockroaches, and craneflies, harbor dense prokaryotic populations in their hindguts ( 53 , 59 , 60 ). Because the number of termites in the world has been estimated and the number of prokaryotes for at least one type of termite has been measured ( 53 , 55 ), it is possible to estimate the total number of prokaryotes in termites (Table 4 ). Although huge, this value is much smaller than the total number of prokaryotes found in many other habitats.

Although the number of prokaryotes in the gastrointestinal tracts of animals is enormous, it is unlikely to represent a large fraction of the total prokaryotes on earth. For example, the number of prokaryotes in the bovine rumen is 4-6 orders of magnitude less than the numbers found in soil, the subsurface, and sea water. Therefore, although the numbers of prokaryotes are known for only a few groups of animals, it is unlikely that animals contain a major fraction of the total number of prokaryotes.

Leaves. Although prokaryotes associated with plant roots are measured with other soil prokaryotes for methodological reasons, leaves and other plant tissues also harbor large populations of prokaryotes. Leaf area can be estimated from the leaf area index. The numbers of prokaryotes on leaves are highly variable, but the viable count (cfu or colony-forming units) rarely exceeds 10 4 -10 6 cfu/cm 2 ( 61-64 ). An upper limit for the number of prokaryotes on leaves can be estimated by assuming a dense population and a high leaf area index. Assuming a leaf area index of 10, which is typical of many forests, the maximum number of prokaryotes would be about 10 11 cfu/m 2 . A forest soil contains about 6 × 10 13 cells/m 2 (see Table 2 ). Even if the viable counts are 1-10% of the direct counts, the maximum number of prokaryotes on leaves is unlikely to exceed the number in soil. In fact, in a temperate forest, the number of prokaryotes on leaves is a small fraction of the number in the underlying soil ( 65 ).

Air. By volume, the atmosphere represents the largest compartment of the biosphere, and prokaryotes have been detected at altitudes as high as 57-77 km ( 66 ). Nevertheless, the total number of airborne prokaryotes appears to be quite low. For the bottom 3 km of the atmosphere, the total number of prokaryotes over land is about 5 × 10 19 cfu (calculated from refs. 67-69 ), a value so low that it is unlikely that airborne prokaryotes represent a large fraction of the total number of prokaryotes.

Carbon Content. The amount of carbon in prokaryotes can be estimated from the cell numbers in soil, aquatic systems, and the subsurface. In the soil and subsurface, the cellular carbon is assumed to be one-half of the dry weight. In soil, the average dry weight of a prokaryotic cell is 2 × 10 -13 g or 200 fg ( 18 ). Thus, the total prokaryotic cellular carbon in soil is 26 × 10 15 g of C or 26 Pg of C (Table 5 ). In the subsurface, there is only one measurement of the average dry weight of cells, that of 172 fg for cells from a terrestrial aquifer ( 36 ). This value yields an estimate of the terrestrial prokaryotic cellular carbon of 22-215 Pg of C (Table 5 ). The estimate for the marine subsurface, 303 Pg of C (Table 5 ), may be compared with 56 Pg of C, the value obtained by Parkes et al. ( 33 ). The difference, 5.4-fold, is due in part to how the depth integrations were calculated. Parkes et al. ( 33 ) used logarithmic extrapolations rather than arithmetic averages, which decreased their estimated number of cells by 3-fold. They also estimated the amount of carbon per cell at 65 fg of C rather than the 86 fg of C used here. The remaining difference occurs because the current estimate is based in part on additional marine and terrestrial data.

                              
View this table:
[in this window]
[in a new window]
 
Table 5.   Number and biomass of prokaryotes in the world

For aquatic systems, the average cellular carbon and volume has been a matter of considerable discussion, and the range in average cellular carbon reported is 5-20 fg of C/cell ( 5 , 17 , 70-72 ). To obtain the estimate of 2.2 Pg of C (Table 5 ), the average cellular carbon for sedimentary ( 9 ) and planktonic prokaryotes ( 17 , 70-72 ) was assumed to be 10 and 20 fg of C/cell, respectively. If the average cellular carbon is assumed to be 5 fg of C/cell, the total amount of prokaryotic cellular carbon would be 0.6 Pg of C.

Discussion. The total carbon of prokaryotes on earth is enormous, approximately 60-100% of the total carbon found in plants (Tables 5 and 6 ). Inclusion of this carbon in global models will greatly increase estimates of the amount of carbon stored in living organisms. In addition, prokaryotes contain large amounts of N, P, and other essential nutrients. For instance, assuming a C/N/P ratio in prokaryotes of 1:0.24:0.025 ( 74 ), the entire prokaryotic pool for N and P is 85-130 Pg of N and 9-14 Pg of P. In all plants, assuming C/N and C/P ratios for the 471 Pg of plant C in forests and woodlands of 156 and 1340, respectively, and C/N and C/P ratios for the 88 Pg of plant C in other ecosystems of 12.5 and 125, respectively ( 73 ), the amounts of N and P are 10 Pg and 1.05 Pg, respectively. Thus, the plant pool for these nutrients is an order of magnitude smaller than the total prokaryotic pool. In fact, the amount of N and P in soil prokaryotes, 6.2 Pg and 0.65 Pg, respectively, is nearly equal to the amount in terrestrial plants even though terrestrial plants contain much more carbon. Other essential nutrients are probably distributed similarly, and prokaryotes may represent the largest living reservoir for these elements on earth.

                              
View this table:
[in this window]
[in a new window]
 
Table 6.   Relationship of plant and prokaryotic biomass to primary productivity

The abundance of prokaryotic carbon and other elements may be compared with the statement of Kluyver that about one-half of the "living protoplasm" on earth is microbial ( 2 ). Because most of the plant biomass is made up of extracellular material such as cell walls and structural polymers, the protoplastic biomass of prokaryotes probably far exceeds that of plants, and Kluyver's well-accepted estimate is probably much too conservative.

From the estimate of prokaryotic carbon in soil and aquatic habitats, it is possible to set some limits for the average growth or turnover rates for these populations. Assuming an efficiency of carbon assimilation of 0.2 ( 75 , 76 ), the amount of "net productivity" necessary to support the turnover of prokaryotes in the upper 200 m of the ocean is four times their carbon content or 0.7-2.9 Pg of C (depending on the amount of carbon per cell). Given that about 85% of the net productivity is consumed in the upper 200 m ( 73 ) and assuming that all of this carbon is used by prokaryotes, the average turnover rate cannot exceed 15-60 yr -1 , and the average generation time cannot be less than 6-25 days. For the upper 200 m of the open ocean, the reported average generation time is 2.5-27 days ( 3 ). Similar calculations for the deep ocean (below 200 m) and soil suggest that the average turnover rate for prokaryotes cannot exceed approximately 1.2 and 0.4 yr -1 , respectively. The value for soil is not greatly different from current estimates for the upper portion of the soil of 0.4-2 yr -1 ( 77-79 ). Thus, our estimates of the prokaryotic cellular carbon in the upper ocean and soil are consistent with published productivity estimates.

Results from a similar analysis for the subsurface prokaryotes are problematic. Assuming that 1 Pg of C/yr, or about 1% of the total net productivity, reaches the subsurface and that the net burial rate is 0.06 Pg of C/yr ( 73 ), only 0.94 Pg of C/yr is available to support the subsurface community of prokaryotes. If the efficiency of carbon assimilation is 0.20, then the calculated average turnover time is 1-2 × 10 3 yr, far longer than found in other ecosystems. At present, a number of plausible explanations for this apparent anomaly exist. ( i ) The average turnover time could be on the order of 1,000 yr. If this were the case, most of the subsurface prokaryotes must be metabolically inactive and probably nonviable. Circumstantial evidence suggests that this is not the case, and viability of subsurface prokaryotes is within the range observed for prokaryotes from surface sediments and soils (cf. 24, 31). Sulfate reduction, methanogenesis, and other activities have also been detected in cores from the subsurface ( 24 ). Thus, although it is likely that the relative metabolic activity and rate of carbon consumption of subsurface bacteria are lower than that found on the surface, activity must still be sufficient to maintain culture viability. ( ii ) Lithoautotrophic processes may provide an additional source of energy for growth of subsurface prokaryotes. Although lithoautotrophy has been demonstrated in some geological formations, current evidence suggests that most of the subsurface biomass is supported by organic matter deposited from the surface ( 80-82 ). Because the data are so limited, future studies could revise this view. ( iii ) The subsurface biomass may be overestimated. The estimate of subsurface carbon is based on a conversion factor derived from data at one site, which may not be representative. However, given that some of the smallest cells so far described in nature contain 5 fg of C, the magnitude of this error is unlikely to be more than 10- to 20-fold. ( iv ) The efficiency of carbon assimilation may be underestimated. Pure culture studies with rich media suggest that the efficiency of carbon assimilation can be as high as 0.85 ( 83 ). However, the error associated with this factor cannot be more than 4-fold. These points, when considered together, emphasize that our current understanding of subsurface prokaryotes is incomplete. Because of their numerical importance, more extensive examination of this habitat is imperative.

The large population size of prokaryotes implies that events that are extremely rare in the laboratory could occur frequently in nature. For instance, prokaryotes have an enormous potential to accumulate mutations and, thus, to acquire genetic diversity. However, the population size itself is not altogether an accurate measure of the potential for mutational change, which must also include the growth rates of the populations. Large, slowly growing populations may produce fewer cells and fewer mutational events than smaller, rapidly growing populations do. Even with the uncertainties for the average growth rates for many natural populations discussed above, it is still possible to estimate the cellular production rates and hence the frequency of these rare events (Table 7 ). Although subsurface prokaryotes predominate numerically, their cellular productivity is comparable to that of the much smaller but more rapidly growing population associated with domestic animals (Table 7 ). The highest cellular productivity is found in the open ocean (Table 7 ). Thus, mutations and other rare genetic events are more likely to occur in the population of marine prokaryotes than in populations in other habitats.

                              
View this table:
[in this window]
[in a new window]
 
Table 7.   Annual cellular production of prokaryotes in various habitats

Genes that are widely distributed in prokaryotes have a tremendous opportunity for mutational change, and the evolution of conserved genes must be otherwise greatly constrained. Assuming a prokaryotic mutation rate of 4 × 10 -7 mutations per gene per DNA replication ( 86 , 87 ), four simultaneous mutations in every gene shared by the populations of marine heterotrophs (in the upper 200 m), marine autotrophs, soil prokaryotes, or prokaryotes in domestic animals would be expected to occur once every 0.4, 0.5, 3.4, or 170 hr, respectively. Similarly, five simultaneous mutations in every gene shared by all four populations would be expected to occur every 60 yr. The capacity for a large number of simultaneous mutations distinguishes prokaryotic from eukaryotic evolution and should be explicitly considered in methods of phylogenetic analyses.

For essentially asexual, haploid organisms such as prokaryotes, mutations are a major source of genetic diversity and one of the essential factors in the formation of novel species. Given prokaryotes' enormous potential to acquire genetic diversity, the number of prokaryotic species may be very large. Recent estimates for the number of prokaryotic species range from 10 5 to 10 7 ( 88 ). However, the current definition of a prokaryotic species, which includes strains whose genomic DNAs form hybrids with a change in the melting temperature ( Delta T m ) of less than 5°C ( 89 ), may be misleading. Application of the same definition to eukaryotes would lead to the inclusion of members of many taxonomic tribes into the same species ( 90 ). Similarly, phylogenetic groups such as humans, orangutans and gibbons would also belong to the same species ( 91 ). Thus, a simple comparison of the number of eukaryotic and prokaryotic species greatly underestimates prokaryotic diversity. Given prokaryotes' numerical abundance and importance in biogeochemical transformations, the absence of detailed knowledge of prokaryotic diversity is a major omission in our knowledge of life on earth.

    ACKNOWLEDGEMENTS

We are grateful to our colleagues, whose understanding, generosity, and sense of humor made this project possible. They include, but are not limited to, M. Azain, B. Binder, J. F. Dowd, R. P. Freeman-Lynde, T. C. Hazen, T. Hollibaugh, S. Kayar, M. Lee, S. Martin, M. Moran, W. J. Payne, L. Pomeroy, J. B. Risatti, and J. Russell. We acknowledge support from National Science Foundation Grants BIR-94-13235 (W.B.W. and D.C.C.), DEB 96-32854 (D.C.C.), and DEB 94-12089 (W.J.W.) and Department of Energy Grant DE-FG02-97ER20269 (W.B.W.).

    FOOTNOTES

dagger To whom reprint requests should be addressed: e-mail: whitman{at}uga.cc.uga.edu .

    REFERENCES
Top
Abstract
Article
References

1. Romankevich, E. A. (1988) Geokhimiya (2) , 292-306 .
2. Kluyver, A. J. & van Niel, C. B. (1956) The Microbe's Contribution to Biology (Harvard Univ. Press, Cambridge, MA), p. 3 .
3. Ducklow, H. W. & Carlson, C. A. (1992) Adv. Microb. Ecol. 12 , 113-181 .
4. Simon, M. (1994) Arch. Hydrobiol. 130 , 283-302 .
5. Fry, J. C. (1988) in Methods in Aquatic Bacteriology , ed. Austin, B. (Wiley, London), pp. 27-72 .
6. Campbell, L. & Vaulot, D. (1993) Deep-Sea Res. I 40 , 2043-2060 [CrossRef] .
7. Garrison, T. (1994) Essentials of Oceanography (Wadsworth, New York), p. 353 .
8. Mitsch, W. J., Mitsch, R. H. & Turner, R. E. (1994) in Global Wetlands: Old World and New , ed. Mitsch, W. J. (Elsevier, New York), pp. 3-56 .
9. Deming, J. W. & Baross, J. A. (1993) in Organic Geochemistry: Principles and Applications , eds. Engel, M. H. & Macko, S. A. (Plenum, New York), pp. 119-144 .
10. Aller, J. Y. & Aller, R. C. (1986) Deep-Sea Res. 33 , 755-790 .
11. Vincent, W. F. (1988) Microbial Ecosystems of Antarctica (Cambridge Univ. Press, New York) .
12. Delille, D. & Rosiers, C. (1995) Polar Biol. 16 , 27-34 [CrossRef] .
13. Gordon, A. L. (1981) J. Geophys. Res. 86 , 4193-4197 .
14. Smith, R. E. H., Clement, P. & Cota, G. F. (1989) Microb. Ecol. 17 , 63-76 .
15. Coleman, D. C. & Crossley, D. A., Jr. (1996) Fundamentals of Soil Ecology (Academic, San Diego) .
16. Richter, D. D. & Markewitz, D. (1995) Bioscience 45 , 600-609 [CrossRef] .
17. Bratbak, G. & Dundas, I. (1984) Appl. Environ. Microbiol. 48 , 755-757 [Abstract/ Free  Full Text] .
18. Paul, E. A. & Clark, F. E. (1989) Soil Microbiology and Biochemistry (Academic, New York) .
19. Fliessbach, A., Sarig, S. & Steinberger, Y. (1994) Arid Soil Res. Rehabil. 8 , 353-362 .
20. Gold, T. (1992) Proc. Natl. Acad. Sci. USA 89 , 6045-6049 [Abstract/ Free  Full Text] .
21. Nilsen, R. K., Beeder, J., Thorstenson, T. & Torsvik, T. (1996) Appl. Environ. Microbiol. 62 , 1793-1798 [Abstract] .
22. Pedersen, K. (1993) Earth-Sci. Rev. 34 , 243-260 .
23. Ronov, A. B. & Yaroshevsky, A. A. (1969) in Geophysical Monograph 13: The Earth's Crust and Upper Mantle , ed. Hart, P. J. (Am. Geophys. Union, Washington, DC), pp. 37-57 .
24. Cragg, B. A., Harvey, S. M., Fry, J. C., Hebert, R. A. & Parkes, R. J. (1992) Proc. Ocean Drill. Program: Sci. Results 127/128 (Pt. 1) , 761-776 .
25. Cragg, B. A. (1994) Proc. Ocean Drill. Program: Sci. Results 135 , 147-150 .
26. Cragg, B. A. & Kemp, A. E. S. (1995) Proc. Ocean Drill. Program: Sci. Results 138 , 599-604 .
27. Cragg, B. A. & Parkes, R. J. (1994) Proc. Ocean Drill. Program: Sci. Results 139 , 509-516 .
28. Cragg, B. A., Parkes, R. J., Fry, J. C., Hebert, R. A., Wimpenny, J. W. T. & Getliff, J. M. (1990) Proc. Ocean Drill. Program: Sci. Results 112 , 607-619 .
29. Cragg, B. A., Parkes, R. J., Fry, J. C., Weightman, A. J., Rochelle, P. A., Maxwell, J. R., Kastner, M., Hovland, M., Whiticar, M. J. & Sample, J. C. (1995) Proc. Ocean Drill. Program: Sci. Results 146 (Pt. 1) , 399-411 .
30. Cragg, B. A., Parkes, R. J., Fry, J. C., Weightman, A. J., Maxwell, J. R., Kastner, M., Hovland, M., Whiticar, M. J., Sample, J. C. & Stein, R. (1995) Proc. Ocean Drill. Program: Sci. Results 146 (Pt. 2) , 139-144 .
31. Hazen, T. C., Jimenez, L., Lopez de Victoria, G. & Fliermans, C. B. (1991) Microb. Ecol. 22 , 293-304 .
32. Chapelle, F. H., Zelibor, J. L., Jr., Grimes, D. J. & Knobel, L. L. (1987) Water Resources Res. 23 , 1625-1632 .
33. Parkes, R. J., Cragg, B. A., Bale, S. J., Getliff, J. M., Goodman, K., Rochelle, P. A., Fry, J. C., Weightman, A. J. & Harvey, S. M. (1994) Nature (London) 371 , 410-413 [CrossRef] .
34. Garland, G. D. (1971) Introduction to Geophysics: Mantle, Core, and Crust (Saunders, Philadelphia) .
35. Harvey, R. W., Smith, R. L. & George, L. (1984) Appl. Environ. Microbiol. 48 , 1197-1202 [Abstract/ Free  Full Text] .
36. Balkwill, D. L., Leach, F. R., Wilson, J. T., McNabb, J. F. & White, D. C. (1988) Microb. Ecol. 16 , 73-84 .
37. Pedersen, K. & Ekendahl, S. (1990) Microb. Ecol. 20 , 37-52 .
38. Stevens, T. O., McKinley, J. P. & Fredrickson, J. K. (1993) Microb. Ecol. 25 , 35-50 .
39. Pedersen, K., Arlinger, J., Hallbeck, L. & Pettersson, C. (1996) Mol. Ecol. 5 , 427-436 [CrossRef] [Medline] .
40. Berner, E. K. & Berner, R. A. (1987) The Global Water Cycle (Prentice-Hall, Englewood Cliffs, NJ) .
41. Balkwill, D. L. (1989) Geomicrobiol. J. 7 , 33-52 .
42. Sinclair, J. L. & Ghiorse, W. C. (1989) Geomicrobiol. J. 7 , 15-31 .
43. Drasar, B. S. & Barrow, P. A. (1985) Intestinal Microbiology (Am. Soc. Microbiol., Washington, DC) .
44. Smith, H. W. (1965) J. Pathol. Bacteriol. 89 , 95-122 .
45. van Houte, J. & Gibbons, R. J. (1966) Antonie van Leewenhoek 32 , 212-222 [Medline] .
46. Cummings, J. H., Banwell, J. G., Segal, I., Coleman, N., Englyst, H. N. & Macfarlane, G. T. (1990) Gastroenterology 98 , A408 .
47. Hungate, R. E. (1966) The Rumen and Its Microbes (Academic, New York), p. 34 .
48. Habel, R. E. (1975) in The Anatomy of the Domestic Animals , ed. Getty, R. (Saunders, Philadelphia), p. 861 .
49. Butine, T. J. & Leedle, J. A. Z. (1989) Appl. Environ. Microbiol. 55 , 1112-1116 [Abstract/ Free  Full Text] .
50. Dukes, H. H. (1955) Physiology of Domestic Animals (Comstock Pub. Assoc., Ithaca, NY), 7th Ed ..
51. Barnes, E. M., Mead, G. C., Barnum, D. A. & Harry, E. G. (1972) Br. Poult. Sci. 13 , 311-326 [ISI] [Medline] .
52. Salanitro, J. P., Fairchilds, I. G. & Zgornicki, Y. D. (1974) Appl. Microbiol. 27 , 678-687 [Medline] .
53. Schultz, J. E. & Breznak, J. A. (1978) Appl. Environ. Microbiol. 35 , 930-936 [Abstract/ Free  Full Text] .
54. Food and Agricultural Organization. (1994) FAO Production Yearbook (Food and Agricultural Organization of the United Nations, Rome), Vol. 48 .
55. Zimmerman, P. R., Greenberg, J. P., Wandiga, S. O. & Crutzen, P. J. (1982) Science 218 , 563-565 [Abstract/ Free  Full Text] .
56. Eller, C., Crabill, M. R. & Bryant, M. P. (1971) Appl. Microbiol. 22 , 522-529 [Medline] .
57. Willett, H. P. (1992) in Zinsser Microbiology , eds. Joklik, W. K., Willett, H. P., Amos, D. B. & Wilfert, C. M. (Appleton & Lange, Norwalk, CT), pp. 393-400 .
58. Marples, M. J. (1965) The Ecology of the Human Skin (Charles C. Thomas, Springfield, IL), p. 6 .
59. Cruden, D. L. & Markovetz, A. J. (1984) Arch. Microbiol. 138 , 131-139 [Medline] .
60. Klug, M. J. & Kotarski, S. (1980) Appl. Environ. Microbiol. 40 , 408-416 [Abstract/ Free  Full Text] .
61. Corpe, W. A. & Rheem, S. (1989) FEMS Microbiol. Lett. 62 , 243-250 .
62. Dickinson, C. H., Austin, B. & Goodfellow, M. (1975) J. Gen. Microbiol. 91 , 157-166 .
63. Ruinen, J. (1961) Plant Soil 15 , 81-109 [CrossRef] .
64. Van Outryve, M. F., Gossele, F. & Swings, J. (1989) Microb. Ecol. 18 , 175-186 [CrossRef] .
65. Holm, E. & Jensen, V. (1972) Oikos 23 , 248-260 .
66. Imshenetsky, A. A., Lysenko, S. V. & Kazakov, G. A. (1978) Appl. Environ. Microbiol. 35 , 1-5 [Abstract/ Free  Full Text] .
67. Fulton, J. D. (1966) Appl. Microbiol. 14 , 241-244 [Medline] .
68. Fulton, J. D. (1966) Appl. Microbiol. 14 , 245-250 [Medline] .
69. Lighthart, B. & Stetzenbach, L. D. (1994) in Atmospheric Microbial Aerosols , eds. Lighthart, B. & Mohr, A. J. (Chapman & Hall, New York), pp. 68-98 .
70. Lee, S. H. & Fuhrman, J. A. (1987) Appl. Environ. Microbiol. 53 , 1298-1303 [Abstract/ Free  Full Text] .
71. Cho, B. C. & Azam, F. (1990) Mar. Ecol. Prog. Ser. 63 , 253-259 .
72. Carlson, C. A., Bales, N. R., Hansell, D. A. & Ducklow, H. W. (1998) EOS 79 , OS171 (abstr.).
73. Schlesinger, W. H. (1997) Biogeochemistry (Academic, New York), 2nd Ed ..
74. Duboc, P., Schill, N., Menoud, L., van Gulik, W. & von Stockar, U. (1995) J. Biotechnol. 43 , 145-158 [CrossRef] [Medline] .
75. Cole, J. J., Findlay, S. & Pace, M. L. (1988) Mar. Ecol. Prog. Ser. 43 , 1-10 .
76. Pomeroy, L. R. & Wiebe, W. J. (1993) Marine Microb. Food Webs 7 , 101-118 .
77. Coleman, D. C. (1995) in Food Webs: Integration of Patterns and Dynamics , eds. Polis, G. A. & Winemiller, K. O. (Chapman & Hall, New York), pp. 39-50 .
78. Jenkinson, D. S., Ladd, J. N. & Rayner, J. H. (1980) in Soil Biochemistry , eds. Paul, E. A. & Ladd, J. N. (Dekker, New York), Vol. 5, pp. 415-471 .
79. Schnuerer, J., Clarholm, M. & Rosswall, T. (1985) Soil Biol. Biochem. 17 , 611-618 [CrossRef] .
80. Ekendahl, S. & Pedersen, K. (1994) Microbiology 140 , 1565-1573 [Abstract] .
81. Stevens, T. (1997) FEMS Microbiol. Rev. 20 , 327-337 [CrossRef] [ISI] .
82. Wellsbury, P., Goodman, K., Barth, T., Cragg, B. A., Barnes, S. P. & Parkes, R. J. (1997) Nature (London) 388 , 573-576 .
83. Payne, W. J. & Williams, M. L. (1976) Biotechnol. Bioengineer. 18 , 1653-1655 .
84. Binder, B. J., Chisholm, S. W., Olsen, R. J., Frankel, S. L. & Worden, A. Z. (1996) Deep-Sea Res. II 43 , 907-931 [CrossRef] .
85. Russell, J. B. & Bruckner, G. G. (1991) in Microbiology of Animals and Animal Products , ed. Woolcock, J. B. (Elsevier, New York), pp. 1-17 .
86. Hutchinson, F. (1996) in Escherichia coli and Salmonella: Cellular and Molecular Biology , ed. Neidhardt, F. C. (Am. Soc. Microbiol., Washington, DC), pp. 2218-2235 .
87. Jacobs, K. L. & Grogan, D. W. (1997) J. Bacteriol. 179 , 3298-3303 [Abstract/ Free  Full Text] .
88. Hammond, P. M. (1995) in Microbial Diversity and Ecosystem Function , eds. Allsopp, D., Colwell, R. R. & Hawksworth, D. L. (CAB International, Wallingford, Oxon, U.K.), pp. 29-71 .
89. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E., Stackebrandt, E., et al. (1987) Int. J. System. Bacteriol. 37 , 463-464 .
90. Sibley, C. G., Ahlquist, J. E. & Monroe, B. L., Jr. (1988) Auk 105 , 409-423 [ISI] .
91. Sibley, C. G. & Ahlquist, J. E. (1987) J. Mol. Evol. 26 , 99-121 [CrossRef] [ISI] [Medline] .


Copyright © 1998 by The National Academy of Sciences  0027-8424/98/956578-6$2.00/0
Add to CiteULike CiteULike     Add to Complore Complore     Add to Connotea Connotea     Add to Del.icio.us Del.icio.us     Add to Digg Digg     What's this?


This article has been cited by other articles in HighWire Press -hosted journals:


Home page
Appl. Environ. Microbiol.Home page
E. J. Chung, H. K. Lim, J.-C. Kim, G. J. Choi, E. J. Park, M. H. Lee, Y. R. Chung, and S.-W. Lee
Forest Soil Metagenome Gene Cluster Involved in Antifungal Activity Expression in Escherichia coli
Appl. Envir. Microbiol., February 1, 2008; 74(3): 723 - 730.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
L. F. Feinberg, R. Srikanth, R. W. Vachet, and J. F. Holden
Constraints on Anaerobic Respiration in the Hyperthermophilic Archaea Pyrobaculum islandicum and Pyrobaculum aerophilum
Appl. Envir. Microbiol., January 15, 2008; 74(2): 396 - 402.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
D. H. Buckley, V. Huangyutitham, T. A. Nelson, A. Rumberger, and J. E. Thies
Diversity of planctomycetes in soil in relation to soil history and environmental heterogeneity.
Appl. Envir. Microbiol., July 1, 2006; 72(7): 4522 - 4531.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
K. B. Sorensen and A. Teske
Stratified communities of active archaea in deep marine subsurface sediments.
Appl. Envir. Microbiol., July 1, 2006; 72(7): 4596 - 4603.
[Abstract] [Full Text] [PDF]


Home page
ajsHome page
A. W. Dale, P. Regnier, and P. Van Cappellen
Bioenergetic Controls on Anaerobic Oxidation of Methane (AOM) in Coastal Marine Sediments: A Theoretical Analysis
Am J Sci, April 1, 2006; 306(4): 246 - 294.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
J. F. Biddle, J. S. Lipp, M. A. Lever, K. G. Lloyd, K. B. Sorensen, R. Anderson, H. F. Fredricks, M. Elvert, T. J. Kelly, D. P. Schrag, et al.
Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru
PNAS, March 7, 2006; 103(10): 3846 - 3851.
[Abstract] [Full Text] [PDF]


Home page
GeologyHome page
H. M. Mader, M. E. Pettitt, J. L. Wadham, E. W. Wolff, and R. J. Parkes
Subsurface ice as a microbial habitat
Geology, March 1, 2006; 34(3): 169 - 172.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
F. Inagaki, T. Nunoura, S. Nakagawa, A. Teske, M. Lever, A. Lauer, M. Suzuki, K. Takai, M. Delwiche, F. S. Colwell, et al.
Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin
PNAS, February 21, 2006; 103(8): 2815 - 2820.
[Abstract] [Full Text] [PDF]


Home page
Int. J. Syst. Evol. Microbiol.Home page
Y. Takahashi, A. Matsumoto, K. Morisaki, and S. Omura
Patulibacter minatonensis gen. nov., sp. nov., a novel actinobacterium isolated using an agar medium supplemented with superoxide dismutase, and proposal of Patulibacteraceae fam. nov.
Int J Syst Evol Microbiol, February 1, 2006; 56(2): 401 - 406.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
C. J. Adams, M. C. Redmond, and D. L. Valentine
Pure-Culture Growth of Fermentative Bacteria, Facilitated by H2 Removal: Bioenergetics and H2 Production
Appl. Envir. Microbiol., February 1, 2006; 72(2): 1079 - 1085.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
N. Fierer and R. B. Jackson
From the Cover: The diversity and biogeography of soil bacterial communities
PNAS, January 17, 2006; 103(3): 626 - 631.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
H. Penning and R. Conrad
Effect of Inhibition of Acetoclastic Methanogenesis on Growth of Archaeal Populations in an Anoxic Model Environment
Appl. Envir. Microbiol., January 1, 2006; 72(1): 178 - 184.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
N. Buesing and M. O. Gessner
Benthic Bacterial and Fungal Productivity and Carbon Turnover in a Freshwater Marsh
Appl. Envir. Microbiol., January 1, 2006; 72(1): 596 - 605.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
H. K. Lim, E. J. Chung, J.-C. Kim, G. J. Choi, K. S. Jang, Y. R. Chung, K. Y. Cho, and S.-W. Lee
Characterization of a Forest Soil Metagenome Clone That Confers Indirubin and Indigo Production on Escherichia coli
Appl. Envir. Microbiol., December 1, 2005; 71(12): 7768 - 7777.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
B. Kopke, R. Wilms, B. Engelen, H. Cypionka, and H. Sass
Microbial Diversity in Coastal Subsurface Sediments: a Cultivation Approach Using Various Electron Acceptors and Substrate Gradients
Appl. Envir. Microbiol., December 1, 2005; 71(12): 7819 - 7830.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
D. P. Moser, T. M. Gihring, F. J. Brockman, J. K. Fredrickson, D. L. Balkwill, M. E. Dollhopf, B. S. Lollar, L. M. Pratt, E. Boice, G. Southam, et al.
Desulfotomaculum and Methanobacterium spp. Dominate a 4- to 5-Kilometer-Deep Fault
Appl. Envir. Microbiol., December 1, 2005; 71(12): 8773 - 8783.
[Abstract] [Full Text] [PDF]


Home page
BioinformaticsHome page
W.-H. Chung, S.-K. Rhee, X.-F. Wan, J.-W. Bae, Z.-X. Quan, and Y.-H. Park
Design of long oligonucleotide probes for functional gene detection in a microbial community
Bioinformatics, November 15, 2005; 21(22): 4092 - 4100.
[Abstract] [Full Text] [PDF]


Home page
Vadose Zone JHome page
V. E. Turcu, S. B. Jones, and D. Or
Continuous Soil Carbon Dioxide and Oxygen Measurements and Estimation of Gradient-Based Gaseous Flux
Vadose Zone J., November 11, 2005; 4(4): 1161 - 1169.
[Abstract] [Full Text] [PDF]


Home page
J PLANKTON RESHome page
E. Vazquez-Dominguez, J. M. Gasol, S. Agusti, C. M. Duarte, and D. Vaque
Growth and grazing losses of prokaryotes in the central Atlantic Ocean
J. Plankton Res., October 1, 2005; 27(10): 1055 - 1066.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
A. Dell'Anno and R. Danovaro
Extracellular DNA Plays a Key Role in Deep-Sea Ecosystem Functioning
Science, September 30, 2005; 309(5744): 2179 - 2179.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
M. M. Floyd, J. Tang, M. Kane, and D. Emerson
Captured Diversity in a Culture Collection: Case Study of the Geographic and Habitat Distributions of Environmental Isolates Held at the American Type Culture Collection
Appl. Envir. Microbiol., June 1, 2005; 71(6): 2813 - 2823.
[Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
A. B. Simonson, J. A. Servin, R. G. Skophammer, C. W. Herbold, M. C. Rivera, and J. A. Lake
Decoding the genomic tree of life
PNAS, May 3, 2005; 102(suppl_1): 6608 - 6613.
[Abstract] [Full Text] [PDF]


Home page
Int. J. Syst. Evol. Microbiol.Home page
E. Stackebrandt and J. Swings
Bundling the forces in systematists
Int J Syst Evol Microbiol, May 1, 2005; 55(3): 993 - 994.
[Full Text] [PDF]


Home page
ScienceHome page
F. Backhed, R. E. Ley, J. L. Sonnenburg, D. A. Peterson, and J. I. Gordon
Host-Bacterial Mutualism in the Human Intestine
Science, March 25, 2005; 307(5717): 1915 - 1920.
[Abstract] [Full Text] [PDF]


Home page
Vadose Zone JHome page
P. A. Holden and N. Fierer
Microbial Processes in the Vadose Zone
Vadose Zone J., February 1, 2005; 4(1): 1 - 21.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
F. L. Jordan, J. J. L. Cantera, M. E. Fenn, and L. Y. Stein
Autotrophic Ammonia-Oxidizing Bacteria Contribute Minimally to Nitrification in a Nitrogen-Impacted Forested Ecosystem
Appl. Envir. Microbiol., January 1, 2005; 71(1): 197 - 206.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
S. D'Hondt, B. B. Jorgensen, D. J. Miller, A. Batzke, R. Blake, B. A. Cragg, H. Cypionka, G. R. Dickens, T. Ferdelman, K.-U. Hinrichs, et al.
Distributions of Microbial Activities in Deep Subseafloor Sediments
Science, December 24, 2004; 306(5705): 2216 - 2221.
[Abstract] [Full Text] [PDF]


Home page
Microbiol. Mol. Biol. Rev.Home page
J. M. Garcia-Fernandez, N. T. de Marsac, and J. Diez
Streamlined Regulation and Gene Loss as Adaptive Mechanisms in Prochlorococcus for Optimized Nitrogen Utilization in Oligotrophic Environments
Microbiol. Mol. Biol. Rev., December 1, 2004; 68(4): 630 - 638.
[Abstract] [Full Text] [PDF]


Home page
Microbiol. Mol. Biol. Rev.Home page
P. D. Schloss and J. Handelsman
Status of the Microbial Census
Microbiol. Mol. Biol. Rev., December 1, 2004; 68(4): 686 - 691.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
B. J. Campbell and S. C. Cary
Abundance of Reverse Tricarboxylic Acid Cycle Genes in Free-Living Microorganisms at Deep-Sea Hydrothermal Vents
Appl. Envir. Microbiol., October 1, 2004; 70(10): 6282 - 6289.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
G. Webster, R. J. Parkes, J. C. Fry, and A. J. Weightman
Widespread Occurrence of a Novel Division of Bacteria Identified by 16S rRNA Gene Sequences Originally Found in Deep Marine Sediments
Appl. Envir. Microbiol., September 1, 2004; 70(9): 5708 - 5713.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
A. Dell'Anno and C. Corinaldesi
Degradation and Turnover of Extracellular DNA in Marine Sediments: Ecological and Methodological Considerations
Appl. Envir. Microbiol., July 1, 2004; 70(7): 4384 - 4386.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
R. M. Morris, M. S. Rappe, E. Urbach, S. A. Connon, and S. J. Giovannoni
Prevalence of the Chloroflexi-Related SAR202 Bacterioplankton Cluster throughout the Mesopelagic Zone and Deep Ocean
Appl. Envir. Microbiol., May 1, 2004; 70(5): 2836 - 2842.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
P. B. Price and T. Sowers
Temperature dependence of metabolic rates for microbial growth, maintenance, and survival
PNAS, March 30, 2004; 101(13): 4631 - 4636.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
M. Breitbart, L. Wegley, S. Leeds, T. Schoenfeld, and F. Rohwer
Phage Community Dynamics in Hot Springs
Appl. Envir. Microbiol., March 1, 2004; 70(3): 1633 - 1640.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
J. M. Coombs and T. Barkay
Molecular Evidence for the Evolution of Metal Homeostasis Genes by Lateral Gene Transfer in Bacteria from the Deep Terrestrial Subsurface
Appl. Envir. Microbiol., March 1, 2004; 70(3): 1698 - 1707.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
F. Inagaki, M. Suzuki, K. Takai, H. Oida, T. Sakamoto, K. Aoki, K. H. Nealson, and K. Horikoshi
Microbial Communities Associated with Geological Horizons in Coastal Subseafloor Sediments from the Sea of Okhotsk
Appl. Envir. Microbiol., December 1, 2003; 69(12): 7224 - 7235.
[Abstract] [Full Text] [PDF]


Home page
Mol Biol EvolHome page
R. Jain, M. C. Rivera, J. E. Moore, and J. A. Lake
Horizontal Gene Transfer Accelerates Genome Innovation and Evolution
Mol. Biol. Evol., October 1, 2003; 20(10): 1598 - 1602.
[Abstract] [Full Text]


Home page
Antimicrob. Agents Chemother.Home page
M. G. Thomas, Y. A. Chan, and S. G. Ozanick
Deciphering Tuberactinomycin Biosynthesis: Isolation, Sequencing, and Annotation of the Viomycin Biosynthetic Gene Cluster
Antimicrob. Agents Chemother., September 1, 2003; 47(9): 2823 - 2830.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
D. J. Sherratt
Bacterial Chromosome Dynamics
Science, August 8, 2003; 301(5634): 780 - 785.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
M. E. Frazier, G. M. Johnson, D. G. Thomassen, C. E. Oliver, and A. Patrinos
Realizing the Potential of the Genome Revolution: The Genomes to Life Program
Science, April 11, 2003; 300(5617): 290 - 293.
[Abstract] [Full Text] [PDF]


Home page
Nucleic Acids ResHome page
H. Zipper, C. Buta, K. Lammle, H. Brunner, J. Bernhagen, and F. Vitzthum
Mechanisms underlying the impact of humic acids on DNA quantification by SYBR Green I and consequences for the analysis of soils and aquatic sediments
Nucleic Acids Res., April 1, 2003; 31(7): e39 - e39.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
K. E. Ashelford, M. J. Day, and J. C. Fry
Elevated Abundance of Bacteriophage Infecting Bacteria in Soil
Appl. Envir. Microbiol., January 1, 2003; 69(1): 285 - 289.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
P. C. Brzostowicz, D. M. Walters, S. M. Thomas, V. Nagarajan, and P. E. Rouviere
mRNA Differential Display in a Microbial Enrichment Culture: Simultaneous Identification of Three Cyclohexanone Monooxygenases from Three Species
Appl. Envir. Microbiol., January 1, 2003; 69(1): 334 - 342.
[Abstract] [Full Text] [PDF]


Home page
GeneticsHome page
F. Dionisio, I. Matic, M. Radman, O. R. Rodrigues, and F. Taddei
Plasmids Spread Very Fast in Heterogeneous Bacterial Communities
Genetics, December 1, 2002; 162(4): 1525 - 1532.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
T. P. Curtis, W. T. Sloan, and J. W. Scannell
From the Cover: Estimating prokaryotic diversity and its limits
PNAS, August 6, 2002; 99(16): 10494 - 10499.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
V. Torsvik, L. Ovreas, and T. F. Thingstad
Prokaryotic Diversity--Magnitude, Dynamics, and Controlling Factors
Science, May 10, 2002; 296(5570): 1064 - 1066.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
D. K. Newman and J. F. Banfield
Geomicrobiology: How Molecular-Scale Interactions Underpin Biogeochemical Systems
Science, May 10, 2002; 296(5570): 1071 - 1077.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
E. O. Casamayor, C. Pedros-Alio, G. Muyzer, and R. Amann
Microheterogeneity in 16S Ribosomal DNA-Defined Bacterial Populations from a Stratified Planktonic Environment Is Related to Temporal Changes and to Ecological Adaptations
Appl. Envir. Microbiol., April 1, 2002; 68(4): 1706 - 1714.
[Abstract] [Full Text] [PDF]


Home page
ScienceHome page
S. D'Hondt, S. Rutherford, and A. J. Spivack
Metabolic Activity of Subsurface Life in Deep-Sea Sediments
Science, March 15, 2002; 295(5562): 2067 - 2070.
[Abstract] [Full Text] [PDF]


Home page
J. Bacteriol.Home page
R. B. Bourret, N. W. Charon, A. M. Stock, and A. H. West
Bright Lights, Abundant Operons--Fluorescence and Genomic Technologies Advance Studies of Bacterial Locomotion and Signal Transduction: Review of the BLAST Meeting, Cuernavaca, Mexico, 14 to 19 January 2001
J. Bacteriol., January 1, 2002; 184(1): 1 - 17.
[Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
W. F. M. Roling, B. M. van Breukelen, M. Braster, B. Lin, and H. W. van Verseveld
Relationships between Microbial Community Structure and Hydrochemistry in a Landfill Leachate-Polluted Aquifer
Appl. Envir. Microbiol., October 1, 2001; 67(10): 4619 - 4629.
[Abstract] [Full Text]


Home page
Appl. Environ. Microbiol.Home page
V. T. Marteinsson, S. Hauksdottir, C. F. V. Hobel, H. Kristmannsdottir, G. O. Hreggvidsson, and J. K. Kristjansson
Phylogenetic Diversity Analysis of Subterranean Hot Springs in Iceland
Appl. Envir. Microbiol., September 1, 2001; 67(9): 4242 - 4248.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
S. Demanèche, E. Kay, F. Gourbière, and P. Simonet
Natural Transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in Soil
Appl. Envir. Microbiol., June 1, 2001; 67(6): 2617 - 2621.
[Abstract] [Full Text]


Home page
Proc. Natl. Acad. Sci. USAHome page
C. F. Chyba and C. B. Phillips
Special Feature: Possible ecosystems and the search for life on Europa
PNAS, January 30, 2001; 98(3): 801 - 804.
[Full Text] [PDF]


Home page
Nucleic Acids ResHome page
J. A. Klappenbach, P. R. Saxman, J. R. Cole, and T. M. Schmidt
rrndb: the Ribosomal RNA Operon Copy Number Database
Nucleic Acids Res., January 1, 2001; 29(1): 181 - 184.
[Abstract] [Full Text] [PDF]


Home page
Microbiol. Mol. Biol. Rev.Home page
M. E. Davey and G. A. O'toole
Microbial Biofilms: from Ecology to Molecular Genetics
Microbiol. Mol. Biol. Rev., December 1, 2000; 64(4): 847 - 867.
[Abstract] [Full Text] [PDF]


Home page
Appl. Environ. Microbiol.Home page
K. E. Ashelford, S. J. Norris, J. C. Fry, M. J. Bailey, and M. J. Day
Seasonal Population Dynamics and Interactions of Competing Bacteriophages and Their Host in the Rhizosphere
Appl. Envir. Microbiol., October 1, 2000; 66(10): 4193 - 4199.
[Abstract] [Full Text]


Home page
Proc. Natl. Acad. Sci. USAHome page
O. Tenaillon, H. Le Nagard, B. Godelle, and F. Taddei
Mutators and sex in bacteria: Conflict between adaptive strategies
PNAS, September 5, 2000; (2000) 180063397.
[Abstract] [Full Text]


Home page
Appl. Environ. Microbiol.Home page
M. R. Rondon, P. R. August, A. D. Bettermann, S. F. Brady, T. H. Grossman, M. R. Liles, K. A. Loiacono, B. A. Lynch, I. A. MacNeil, C. Minor, et al.
Cloning the Soil Metagenome: a Strategy for Accessing the Genetic and Functional Diversity of Uncultured Microorganisms
Appl. Envir. Microbiol., June 1, 2000; 66(6): 2541 - 2547.
[Abstract] [Full Text]


Home page
Appl. Environ. Microbiol.Home page
F. Fegatella and R. Cavicchioli
Physiological Responses to Starvation in the Marine Oligotrophic Ultramicrobacterium Sphingomonas sp. Strain RB2256
Appl. Envir. Microbiol., May 1, 2000; 66(5): 2037 - 2044.
[Abstract] [Full Text]


Home page
Appl. Environ. Microbiol.Home page
K. Takai and K. Horikoshi
Molecular Phylogenetic Analysis of Archaeal Intron-Containing Genes Coding for rRNA Obtained from a Deep-Subsurface Geothermal Water Pool
Appl. Envir. Microbiol., December 1, 1999; 65(12): 5586 - 5589.
[Abstract] [Full Text]


Home page
J. Bacteriol.Home page
E. A. Stohl, S. F. Brady, J. Clardy, and J. Handelsman
ZmaR, a Novel and Widespread Antibiotic Resistance Determinant That Acetylates Zwittermicin A
J. Bacteriol., September 1, 1999; 181(17): 5455 - 5460.
[Abstract] [Full Text]


Home page
GeneticsHome page
W. B. Whitman, F. Pfeifer, P. Blum, and A. Klein
What Archaea Have to Tell Biologists
Genetics, August 1, 1999; 152(4): 1245 - 1248.
[Full Text]


Home page
GeneticsHome page
O. Tenaillon, B. Toupance, H. Le Nagard, F. Taddei, and B. Godelle
Mutators, Population Size, Adaptive Landscape and the Adaptation of Asexual Populations of Bacteria
Genetics, June 1, 1999; 152(2): 485 - 493.
[Abstract] [Full Text]


Home page
Proc. Natl. Acad. Sci. USAHome page
R. W. Hendrix, M. C.?M. Smith, R. N. Burns, M. E. Ford, and G. F. Hatfull
Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage
PNAS, March 2, 1999; 96(5): 2192 - 2197.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
C. R. Woese
Default taxonomy: Ernst Mayr's view of the microbial world
PNAS, September 15, 1998; 95(19): 11043 - 11046.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
B. P. Weiss, Y. L. Yung, and K. H. Nealson
Atmospheric energy for subsurface life on Mars?
PNAS, February 15, 2000; 97(4): 1395 - 1399.
[Abstract] [Full Text] [PDF]


Home page
Proc. Natl. Acad. Sci. USAHome page
O. Tenaillon, H. Le Nagard, B. Godelle, and F. Taddei
Mutators and sex in bacteria: Conflict between adaptive strategies
PNAS, September 12, 2000; 97(19): 10465 - 10470.
[Abstract] [Full Text] [PDF]



This Article
Right arrow Abstract Freely available
Right arrow Full Text (PDF)
Right arrow Alert me when this article is cited
Right arrow Alert me if a correction is posted
Right arrow Citation Map
Services
Right arrow Email this article to a colleague
Right arrow Similar articles in this journal
Right arrow Similar articles in ISI Web of Science
Right arrow Similar articles in PubMed
Right arrow Alert me to new issues of the journal
Right arrow Add to My File Cabinet
Right arrow Download to citation manager
Right arrow Request Copyright Permission
Citing Articles
Right arrow Citing Articles via HighWire
Right arrow Citing Articles via CrossRef
Right arrow Citing Articles via ISI Web of Science (399)
Right arrow Citing Articles via Google Scholar
Google Scholar
Right arrow Articles by Whitman, W. B.
Right arrow Articles by Wiebe, W. J.
Right arrow Search for Related Content
PubMed
Right arrow PubMed Citation
Right arrow Articles by Whitman, W. B.
Right arrow Articles by Wiebe, W. J.
GeoRef
Right arrow GeoRef Citation
Social Bookmarking
 Add to CiteULike   Add to Complore   Add to Connotea   Add to Del.icio.us   Add to Digg  
What's this?