한국   대만   중국   일본 
Temperature programmed surface reaction test of Co?Ni bimetallic aerogel catalysts for methane reforming | Reaction Kinetics, Mechanisms and Catalysis Skip to main content

Temperature programmed surface reaction test of Co?Ni bimetallic aerogel catalysts for methane reforming

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

CH 4 temperature programmed surface reaction (TPSR) and CH 4 oxy-CO 2 TPSR are applied to test Ni (10Ni), Co (10Co) and Co?Ni (5Co5Ni) aerogel catalysts in the CH 4 oxy-CO 2 reforming reaction. Monometallic 10Ni outperforms 10Co and bimetallic 5Co5Ni aerogel catalysts in the CH 4 -TPSR test. The CH 4 activation temperature (AT) of 10Ni and 5Co5Ni is 160?°C lower than that of 10Co, indicating that CH 4 can be activated more effectively on 10Ni and 5Co5Ni. As a result, the critical temperature (CT) of 10Ni and 5Co5Ni in the CH 4 oxy-CO 2 TPSR test are 680?°C and 695?°C, whereas 10Co shows no CT in the test. The CH 4 oxy-CO 2 TPSR test also reveals that although CTs of the catalyst are independent of the reduction pretreatment, the catalytic oxidation abilities for carbon species are greatly promoted after reduction. The calcined samples activate CH 4 via the combination of combustion and partial oxidation, while the reduced sample activate CH 4 mainly via combustion. Furthermore, the reduced 5Co5Ni activates and completes CH 4 oxidation at temperatures 60?°C and 128?°C lower than those of 10Ni, suggesting its higher ability to catalyze the oxidation of carbon species generated in CH 4 reforming, which could be account for its better performance than those of the monometallic catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Korea(Rep.))

Instant access to the full article PDF.

Fig.?1
Fig.?2
Fig.?3
Fig.?4
Fig.?5

Similar content being viewed by others

References

  1. Chein RY, Chen YC, Yu CT, Chung JN (2015) J Nat Gas Sci Eng 26:617?629

    Article   CAS   Google Scholar  

  2. Choudhary TV, Choudhary VR (2008) Angew Chem Int Ed 47:1828?1847

    Article   CAS   Google Scholar  

  3. Freitas ACD, Guirardello R (2012) J Nat Gas Chem 21:571?580

    Article   CAS   Google Scholar  

  4. Pasel J, Wohlrab S, Kreft S, Rotov M, Lohken K, Peters R, Stolten D (2016) J Power Sources 325:51?63

    Article   CAS   Google Scholar  

  5. Shojaeepour F, Kazemzad M, Rahimpour MR, Khanlarkhani A, Hafizi A (2018) Reac Kinet Mech Cat 124:229?245

    Article   CAS   Google Scholar  

  6. Abdollahifar M, Haghighi M, Babaluo AA (2014) J Ind Eng Chem 20:1845?1851

    Article   CAS   Google Scholar  

  7. Odedairo T, Chen JL, Zhu ZH (2013) J Phys Chem C 117:21288?21302

    Article   CAS   Google Scholar  

  8. Chen L, Zhu Q, Hao Z, Zhang T, Xie Z (2010) Int J Hydrogen Energy 35:8494?8502

    Article   CAS   Google Scholar  

  9. Hao Z, Zhu Q, Jiang Z, Li H (2008) Powder Technol 183:46?52

    Article   CAS   Google Scholar  

  10. Hao Z, Zhu Q, Jiang Z, Hou B, Li H (2009) Fuel Process Technol 90:113?121

    Article   CAS   Google Scholar  

  11. Jiang Z, Liao X, Zhao Y (2013) Appl Petrochem Res 3:91?99

    Article   CAS   Google Scholar  

  12. Yang T, Chen W, Chen L, Liu W, Zhang D (2016) J CO2 Util 16:130?137

    Article   CAS   Google Scholar  

  13. Tang S, Ji L, Lin J, Zeng HC, Tan KL, Li K (2000) J Catal 194:424?430

    Article   CAS   Google Scholar  

  14. Wang Y, Fang Q, Shen W, Zhu Z, Fang Y (2018) Reac Kinet Mech Cat 125:127?139

    Article   CAS   Google Scholar  

  15. Zhang X, Fang X, Feng X, Li X, Liu W, Xu X, Zhang N, Gao Z, Wang X, Zhou W (2017) Catal Sci Technol 7:2729?2743

    Article   CAS   Google Scholar  

  16. E-h Yang, Y-s Noh, Ramesh S, Lim SS, Moon DJ (2015) Fuel Process Technol 134:404?413

    Article   CAS   Google Scholar  

  17. Huang X, Xue G, Wang C, Zhao N, Sun N, Wei W, Sun Y (2016) Catal Sci Technol 6:449?459

    Article   CAS   Google Scholar  

  18. Sengupta S, Deo G (2015) J CO2 Util 10:67?77

    Article   CAS   Google Scholar  

  19. Li L, Guillen DP, Neelameggham NR, Zhang L, Zhu J, Xuan L, Basu SN, Haque N, Wang T, Verhulst DE, Pandey A (2016) Energy Technol 2016:173?179

    Google Scholar  

  20. Zhang J, Wang H, Dalai AK (2007) J Catal 249:300?310

    Article   CAS   Google Scholar  

  21. Koh ACW, Chen L, Leong WK, Johnson BFG, Khimyak T, Lin J (2007) Int J Hydrogen Energy 32:725?730

    Article   CAS   Google Scholar  

  22. Pinilla JL, de Llobet S, Moliner R, Suelves I (2017) Appl Catal B 200:255?264

    Article   CAS   Google Scholar  

  23. Chen L, Zhu Q, Wu R (2011) Int J Hydrogen Energy 36:2128?2136

    Article   CAS   Google Scholar  

  24. Rodrigues L, Silva RB, Rocha MGC, Bargiela P, Noronha FB, Brandao ST (2012) Catal Today 197:137?143

    Article   CAS   Google Scholar  

  25. De Rogatis L, Montini T, Cognigni A, Olivi L, Fornasiero P (2009) Catal Today 145:176?185

    Article   CAS   Google Scholar  

  26. Chen L, Hao Z, Yang T, Liu W, Zhang D (2014) Int J Hydrogen Energy 39:15474?15481

    Article   CAS   Google Scholar  

  27. Osaki T, Tanaka T, Horiuchi T, Sugiyama T, Suzuki K, Mori T (2000) Appl Organomet Chem 14:789?793

    Article   CAS   Google Scholar  

  28. Nagaoka K, Takanabe K, K-I Aika (2004) Appl Catal A 268:151?158

    Article   CAS   Google Scholar  

  29. Jin R, Chen Y, Li W, Cui W, Ji Y, Yu C, Jiang Y (2000) Appl Catal A 201:71?80

    Article   CAS   Google Scholar  

  30. Garcia V, Caldes MT, Joubert O, Gautron E, Mondragon F, Moreno A (2010) Catal Today 157:177?182

    Article   CAS   Google Scholar  

  31. Osaki T, Mori T (2009) J Non-Cryst Solids 355:1590?1596

    Article   CAS   Google Scholar  

  32. Wang H, Miller JT, Shakouri M, Xi C, Wu T, Zhao H, Akatay MC (2013) Catal Today 207:3?12

    Article   CAS   Google Scholar  

  33. Takanabe K, Nagaoka K, Nariai K, K-i Aika (2005) J Catal 232:268?275

    Article   CAS   Google Scholar  

  34. Son IH, Lee SJ, Song IY, Jeon WS, Jung I, Yun DJ, Jeong D-W, Shim J-O, Jang W-J, Roh H-S (2014) Fuel 136:194?200

    Article   CAS   Google Scholar  

  35. Luisetto I, Tuti S, Di Bartolomeo E (2012) Int J Hydrogen Energy 37:15992?15999

    Article   CAS   Google Scholar  

Download references

Acknowledgements

The financial supports from National Science Foundation of China (No. 21306231), China Scholarship Council (No. 201706375005), China Postdoctoral Science Foundation (No. 2018M632988) and Natural Science Foundation of Hunan province (No. 2018JJ3662) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duchao Zhang .

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3107?kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Huang, Q., Zhang, D. et al. Temperature programmed surface reaction test of Co?Ni bimetallic aerogel catalysts for methane reforming. Reac Kinet Mech Cat 126 , 951?962 (2019). https://doi.org/10.1007/s11144-018-01531-3

Download citation

  • Received :

  • Accepted :

  • Published :

  • Issue Date :

  • DOI : https://doi.org/10.1007/s11144-018-01531-3

Keywords