Samarium-147

From Wikipedia, the free encyclopedia
Samarium-147,  147 Sm
General
Symbol 147 Sm
Names Samarium-147, 147Sm, Sm-147
Protons ( Z ) 62
Neutrons ( N ) 85
Nuclide data
Natural abundance 15.00%
Half-life ( t 1/2 ) 1.06 × 10 11 years
Isotope mass 146.9148979(26) Da
Spin 7/2?
Parent isotopes 147 Pm  (β )
151 Gd  (α)
Decay products 143 Nd
Decay modes
Decay mode Decay energy ( MeV )
Isotopes of samarium
Complete table of nuclides

Samarium-147 ( 147 Sm or Sm-147 ) is an isotope of samarium , making up 15% of natural samarium . It is an extremely long-lived radioisotope , with a half-life of 1.06×10 11 years, although this can range from 1.05×10 11 [1] to 1.17×10 11 [2] years. It is mainly used in radiometric dating. [3]

Uses [ edit ]

Samarium-147 is used in samarium?neodymium dating . The method of isochron dating is used to find the date at which a rock (or group of rocks) are formed. [4] The Sm-Nd isochron plots the ratio of radiogenic 143 Nd to non-radiogenic 144 Nd against the ratio of the parent isotope 147 Sm to the non-radiogenic isotope 144 Nd. 144 Nd is used to normalize the radiogenic isotope in the isochron because it is a slightly radioactive and relatively abundant neodymium isotope.

The Sm-Nd isochron is defined by the following equation:

where:

t is the age of the sample,
λ is the decay constant of 147 Sm,
( e λ t ?1) is the slope of the isochron which defines the age of the system.

Alternatively, one can assume that the material formed from mantle material which was following the same path of evolution of these ratios as chondrites , and then again the time of formation can be calculated (see Samarium?neodymium dating#The CHUR model ). [4] [5]

See also [ edit ]

References [ edit ]

  1. ^ Wright, P. M.; Steinberg, E. P.; Glendenin, L. E. (1961-07-01). "Half-Life of Samarium-147" . Physical Review . 123 (1): 205?208. Bibcode : 1961PhRv..123..205W . doi : 10.1103/PhysRev.123.205 .
  2. ^ Kinoshita, Norikazu; Yokoyama, Akihiko; Nakanishi, Takashi (2003). "Half-Life of Samarium-147" . Journal of Nuclear and Radiochemical Sciences . 4 (1): 5?7. doi : 10.14494/jnrs2000.4.5 . S2CID   120606011 .
  3. ^ Currie, Lloyd A., ed. (1982-01-29). Nuclear and Chemical Dating Techniques: Interpreting the Environmental Record . ACS Symposium Series. Vol. 176. WASHINGTON, D. C.: AMERICAN CHEMICAL SOCIETY. doi : 10.1021/bk-1982-0176.ch001 . ISBN   978-0-8412-0669-4 .
  4. ^ a b Depaolo, D. J.; Wasserburg, G. J. (1976). "Nd isotopic variations and petrogenetic models" (PDF) . Geophysical Research Letters . 3 (5): 249. Bibcode : 1976GeoRL...3..249D . doi : 10.1029/GL003i005p00249 .
  5. ^ McCulloch, M. T.; Wasserburg, G. J. (1978). "Sm-Nd and Rb-Sr Chronology of Continental Crust Formation" . Science . 200 (4345): 1003?11. Bibcode : 1978Sci...200.1003M . doi : 10.1126/science.200.4345.1003 . PMID   17740673 . S2CID   40675318 .


Lighter:
samarium-146
Samarium-147 is an
isotope of samarium
Heavier:
samarium-148
Decay product of:
gadolinium -151 ( α )
promethium -147
( β ? )
Decay chain
of samarium-147
Decays to:
neodymium-143 (α)