Isotopes of vanadium

From Wikipedia, the free encyclopedia
Isotopes of vanadium   ( 23 V)
Main isotopes Decay
abun­dance half-life ( t 1/2 ) mode pro­duct
48 V synth 16 d β + 48 Ti
49 V synth 330 d ε 49 Ti
50 V 0.25% 2.71 × 10 17  y β + 50 Ti
51 V 99.8% stable
Standard atomic weight A r °(V)

Naturally occurring vanadium ( 23 V) is composed of one stable isotope 51 V and one radioactive isotope 50 V with a half-life of 2.71×10 17 years. 24 artificial radioisotopes have been characterized (in the range of mass number between 40 and 65) with the most stable being 49 V with a half-life of 330 days, and 48 V with a half-life of 15.9735 days. All of the remaining radioactive isotopes have half-lives shorter than an hour, the majority of them below 10 seconds, the least stable being 42 V with a half-life shorter than 55 nanoseconds, with all of the isotopes lighter than it, and none of the heavier, have unknown half-lives. In 4 isotopes, metastable excited states were found (including 2 metastable states for 60 V), which adds up to 5 meta states.

The primary decay mode before the most abundant stable isotope 51 V is electron capture . The next most common mode is beta decay . The primary decay products before 51 V are element 22 ( titanium ) isotopes and the primary products after are element 24 ( chromium ) isotopes.

List of isotopes [ edit ]

Nuclide
[n 1]
Z N Isotopic mass ( Da )
[n 2] [n 3]
Half-life
[n 4] [n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7]
Spin and
parity
[n 8] [n 5]
Natural abundance (mole fraction) Note
Excitation energy [n 5] Normal proportion Range of variation
40 V 23 17 40.01109(54)# p 39 Ti 2?#
41 V 23 18 40.99978(22)# p 40 Ti 7/2?#
42 V 23 19 41.99123(21)# <55 ns p 41 Ti 2?#
43 V 23 20 42.98065(25)# 80# ms β + 43 Ti 7/2?#
44 V 23 21 43.97411(13) 111(7) ms β + (>99.9%) 44 Ti (2+)
β + , α (<.1%) 40 Ca
44m V 270(100)# keV 150(3) ms β + 44 Ti (6+)
45 V 23 22 44.965776(18) 547(6) ms β + 45 Ti 7/2?
46 V 23 23 45.9602005(11) 422.50(11) ms β + 46 Ti 0+
46m V 801.46(10) keV 1.02(7) ms IT 46 V 3+
47 V 23 24 46.9549089(9) 32.6(3) min β + 47 Ti 3/2?
48 V 23 25 47.9522537(27) 15.9735(25) d β + 48 Ti 4+
49 V 23 26 48.9485161(12) 329(3) d EC 49 Ti 7/2?
50 V [n 9] 23 27 49.9471585(11) 2.71(13)×10 17 y β + 50 Ti 6+ 0.00250(4) 0.002487?0.002502
β ? (<3% [3] ) 50 Cr
51 V 23 28 50.9439595(11) Stable 7/2? 0.99750(4) 0.997498?0.997513 See V-51 nuclear magnetic resonance
52 V 23 29 51.9447755(11) 3.743(5) min β ? 52 Cr 3+
53 V 23 30 52.944338(3) 1.60(4) min β ? 53 Cr 7/2?
54 V 23 31 53.946440(16) 49.8(5) s β ? 54 Cr 3+
54m V 108(3) keV 900(500) ns (5+)
55 V 23 32 54.94723(11) 6.54(15) s β ? 55 Cr (7/2?)#
56 V 23 33 55.95053(22) 216(4) ms β ? (>99.9%) 56 Cr (1+)
β ? , n 55 Cr
57 V 23 34 56.95256(25) 0.35(1) s β ? (>99.9%) 57 Cr (3/2?)
β ? , n (<.1%) 56 Cr
58 V 23 35 57.95683(27) 191(8) ms β ? (>99.9%) 58 Cr 3+#
β ? , n (<.1%) 57 Cr
59 V 23 36 58.96021(33) 75(7) ms β ? (>99.9%) 59 Cr 7/2?#
β ? , n (<.1%) 58 Cr
60 V 23 37 59.96503(51) 122(18) ms β ? (>99.9%) 60 Cr 3+#
β ? , n (<.1%) 59 Cr
60m1 V 0(150)# keV 40(15) ms 1+#
60m2 V 101(1) keV >400 ns
61 V 23 38 60.96848(43)# 47.0(12) ms β ? 61 Cr 7/2?#
62 V 23 39 61.97378(54)# 33.5(20) ms β ? 62 Cr 3+#
63 V 23 40 62.97755(64)# 17(3) ms β ? 63 Cr (7/2?)#
64 V 23 41 63.98347(75)# 10# ms [>300 ns]
65 V 23 42 64.98792(86)# 10# ms 5/2?#
66 V [4] 23 43 65.99324(54)# 10# ms
(>620 ns)
β ? ? [n 10] 66 Cr
β ? , n? [n 10] 65 Cr
β ? , 2n? [n 10] 64 Cr
67 V [5] 23 44 66.99813(64)# 8# ms
(>620 ns)
β ? ? [n 10] 67 Cr 5/2?#
β ? , n? [n 10] 66 Cr
β ? , 2n? [n 10] 65 Cr
This table header & footer:
  1. ^ m V – Excited nuclear isomer .
  2. ^ ( ) – Uncertainty (1 σ ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life  – nearly stable, half-life longer than age of universe .
  5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ Primordial radionuclide
  10. ^ a b c d e f Decay mode shown is energetically allowed, but has not been experimentally observed to occur in this nuclide.

References [ edit ]

  1. ^ "Standard Atomic Weights: Vanadium" . CIAAW . 1977.
  2. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Bohlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Groning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)" . Pure and Applied Chemistry . doi : 10.1515/pac-2019-0603 . ISSN   1365-3075 .
  3. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3): 030001. doi : 10.1088/1674-1137/abddae .
  4. ^ Tarasov, O. B.; et al. (April 2009). "Evidence for a Change in the Nuclear Mass Surface with the Discovery of the Most Neutron-Rich Nuclei with 17 ≤ Z ≤ 25" . Physical Review Letters . 102 (14): 142501. arXiv : 0903.1975 . Bibcode : 2009PhRvL.102n2501T . doi : 10.1103/PhysRevLett.102.142501 . PMID   19392430 . S2CID   42329617 . Retrieved 3 January 2023 .
  5. ^ Tarasov, O. B.; et al. (May 2013). "Production cross sections from 82 Se fragmentation as indications of shell effects in neutron-rich isotopes close to the drip-line" . Physical Review C . 87 (5): 054612. arXiv : 1303.7164 . Bibcode : 2013PhRvC..87e4612T . doi : 10.1103/PhysRevC.87.054612 .