Isotopes of europium

From Wikipedia, the free encyclopedia
Isotopes of europium   ( 63 Eu)
Main isotopes [1] Decay
abun­dance half-life ( t 1/2 ) mode pro­duct
150 Eu synth 36.9 y β + 150 Sm
151 Eu 47.8% 4.62 × 10 18  y α 147 Pm
152 Eu synth 13.54 y ε 152 Sm
β ? 152 Gd
153 Eu 52.2% stable
154 Eu synth 8.59 y β ? 154 Gd
155 Eu synth 4.76 y β ? 155 Gd
Standard atomic weight A r °(Eu)

Naturally occurring europium ( 63 Eu) is composed of two isotopes , 151 Eu and 153 Eu, with 153 Eu being the most abundant (52.2% natural abundance ). While 153 Eu is observationally stable (theoretically can undergo alpha decay with half-life over 5.5×10 17 years), 151 Eu was found in 2007 to be unstable and undergo alpha decay . [4] The half-life is measured to be (4.62 ± 0.95(stat.) ± 0.68(syst.)) × 10 18 years [5] which corresponds to 1 alpha decay per two minutes in every kilogram of natural europium. Besides the natural radioisotope 151 Eu, 36 artificial radioisotopes have been characterized, with the most stable being 150 Eu with a half-life of 36.9 years, 152 Eu with a half-life of 13.516 years, 154 Eu with a half-life of 8.593 years, and 155 Eu with a half-life of 4.7612 years. The majority of the remaining radioactive isotopes, which range from 130 Eu to 170 Eu, have half-lives that are less than 12.2 seconds. This element also has 18 metastable isomers , with the most stable being 150m Eu (t 1/2 12.8 hours), 152m1 Eu (t 1/2 9.3116 hours) and 152m5 Eu (t 1/2 96 minutes).

The primary decay mode before the most abundant stable isotope, 153 Eu, is electron capture , and the primary mode after is beta decay . The primary decay products before 153 Eu are isotopes of samarium and the primary products after are isotopes of gadolinium .

List of isotopes [ edit ]


Nuclide
[n 1]
Z N Isotopic mass ( Da )
[n 2] [n 3]
Half-life
[n 4] [n 5]
Decay
mode

[n 6]
Daughter
isotope

[n 7] [n 8]
Spin and
parity
[n 9] [n 5]
Natural abundance (mole fraction)
Excitation energy [n 5] Normal proportion Range of variation
130 Eu 63 67 129.96357(54)# 1.1(5) ms
[0.9(+5?3) ms]
2+#
131 Eu 63 68 130.95775(43)# 17.8(19) ms 3/2+
132 Eu 63 69 131.95437(43)# 100# ms β + 132 Sm
p 131 Sm
133 Eu 63 70 132.94924(32)# 200# ms β + 133 Sm 11/2?#
134 Eu 63 71 133.94651(21)# 0.5(2) s β + 134 Sm
β + , p (rare) 133 Pm
135 Eu 63 72 134.94182(32)# 1.5(2) s β + 135 Sm 11/2?#
β + , p 134 Pm
136 Eu 63 73 135.93960(21)# 3.3(3) s β + (99.91%) 136 Sm (7+)
β + , p (.09%) 135 Pm
136m Eu 0(500)# keV 3.8(3) s β + (99.91%) 136 Sm (3+)
β + , p (.09%) 135 Pm
137 Eu 63 74 136.93557(21)# 8.4(5) s β + 137 Sm 11/2?#
138 Eu 63 75 137.93371(3) 12.1(6) s β + 138 Sm (6?)
139 Eu 63 76 138.929792(14) 17.9(6) s β + 139 Sm (11/2)?
140 Eu 63 77 139.92809(6) 1.51(2) s β + (95.1(7)%) 140 Sm 1+
EC (4.9(7)%)
140m Eu 210(15) keV 125(2) ms IT (99%) 140 Eu 5?#
β + (1%) 140 Sm
141 Eu 63 78 140.924931(14) 40.7(7) s β + 141 Sm 5/2+
141m Eu 96.45(7) keV 2.7(3) s IT (86%) 141 Eu 11/2?
β + (14%) 141 Sm
142 Eu 63 79 141.92343(3) 2.36(10) s β + (89.9(16)%) 142 Sm 1+
EC (11.1(16)%)
142m Eu 460(30) keV 1.223(8) min β + 142 Sm 8?
143 Eu 63 80 142.920298(12) 2.59(2) min β + 143 Sm 5/2+
143m Eu 389.51(4) keV 50.0(5) μs 11/2?
144 Eu 63 81 143.918817(12) 10.2(1) s β + 144 Sm 1+
144m Eu 1127.6(6) keV 1.0(1) μs (8?)
145 Eu 63 82 144.916265(4) 5.93(4) d β + 145 Sm 5/2+
145m Eu 716.0(3) keV 490 ns 11/2?
146 Eu 63 83 145.917206(7) 4.61(3) d β + 146 Sm 4?
146m Eu 666.37(16) keV 235(3) μs 9+
147 Eu 63 84 146.916746(3) 24.1(6) d β + (99.99%) 147 Sm 5/2+
α (.0022%) 143 Pm
148 Eu 63 85 147.918086(11) 54.5(5) d β + (100%) 148 Sm 5?
α (9.39×10 ?7 %) 144 Pm
149 Eu 63 86 148.917931(5) 93.1(4) d EC 149 Sm 5/2+
150 Eu 63 87 149.919702(7) 36.9(9) y β + 150 Sm 5(?)
150m Eu 42.1(5) keV 12.8(1) h β ? (89%) 150 Gd 0?
β + (11%) 150 Sm
IT (5×10 ?8 %) 150 Eu
151 Eu [n 10] 63 88 150.9198502(26) 4.62×10 18  y α 147 Pm 5/2+ 0.4781(6)
151m Eu 196.245(10) keV 58.9(5) μs 11/2?
152 Eu 63 89 151.9217445(26) 13.537(6) y EC (72.09%) 152 Sm 3?
β ? (27.9%) 152 Gd
β + (0.027%) 152 Sm
152m1 Eu 45.5998(4) keV 9.3116(13) h β ? (72%) 152 Gd 0?
β + (28%) 152 Sm
152m2 Eu 65.2969(4) keV 0.94(8) μs 1?
152m3 Eu 78.2331(4) keV 165(10) ns 1+
152m4 Eu 89.8496(4) keV 384(10) ns 4+
152m5 Eu 147.86(10) keV 96(1) min 8?
153 Eu [n 11] 63 90 152.9212303(26) Observationally Stable [n 12] [6] 5/2+ 0.5219(6)
154 Eu [n 11] 63 91 153.9229792(26) 8.593(4) y β ? (99.98%) 154 Gd 3?
EC (.02%) 154 Sm
154m1 Eu 68.1702(4) keV 2.2(1) μs IT 154 Eu 2+
154m2 Eu 145.3(3) keV 46.3(4) min IT 154 Eu (8?)
155 Eu [n 11] 63 92 154.9228933(27) 4.7611(13) y β ? 155 Gd 5/2+
156 Eu [n 11] 63 93 155.924752(6) 15.19(8) d β ? 156 Gd 0+
157 Eu 63 94 156.925424(6) 15.18(3) h β ? 157 Gd 5/2+
158 Eu 63 95 157.92785(8) 45.9(2) min β ? 158 Gd (1?)
159 Eu 63 96 158.929089(8) 18.1(1) min β ? 159 Gd 5/2+
160 Eu 63 97 159.93197(22)# 38(4) s β ? 160 Gd 1(?)
161 Eu 63 98 160.93368(32)# 26(3) s β ? 161 Gd 5/2+#
162 Eu 63 99 161.93704(32)# 10.6(10) s β ? 162 Gd
163 Eu 63 100 162.93921(54)# 7.7(4) s β ? 163 Gd 5/2+#
163m Eu 964.5(10) keV 911(24) ns (13/2?)
164 Eu 63 101 163.94299(64)# 4.16(19) s β ? 164 Gd
165 Eu 63 102 164.94572(75)# 2.163 +0.139
?0.120
 s
[7]
β ? 165 Gd 5/2+#
166 Eu 63 103 165.94997(86)# 1.277 +0.100
?0.145
 s
[7]
β ? (99.37%) 166 Gd
β ? , n (0.63%) 165 Gd
167 Eu 63 104 166.95321(86)# 852 +76
?54
 s
[7]
β ? (98.05%) 167 Gd 5/2+#
β ? , n (1.95%) 166 Gd
168 Eu 63 105 440 +48
?47
 s
[7]
β ? (96.05%) 168 Gd
β ? , n (3.95%) 167 Gd
169 Eu 63 106 389 +92
?88
 s
[7]
β ? (85.38%) 169 Gd
β ? , n (14.62%) 168 Gd
170 Eu 63 107 197 +74
?71
 s
[7]
β ? 170 Gd
β ? , n 169 Gd
This table header & footer:
  1. ^ m Eu – Excited nuclear isomer .
  2. ^ ( ) – Uncertainty (1 σ ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life  – nearly stable, half-life longer than age of universe .
  5. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  7. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  8. ^ Bold symbol as daughter – Daughter product is stable.
  9. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  10. ^ primordial radionuclide
  11. ^ a b c d Fission product
  12. ^ Believed to undergo α decay to 149 Pm with a half-life over 5.5 × 10 17  years

Europium-155 [ edit ]

Medium-lived
fission products [ further explanation needed ]
t ½
( year )
Yield
( % )
Q
( keV )
βγ
155 Eu 4.76 0.0803 252 βγ
85 Kr 10.76 0.2180 687 βγ
113m Cd 14.1 0.0008 316 β
90 Sr 28.9 4.505    2826 β
137 Cs 30.23 6.337    1176 β γ
121m Sn 43.9 0.00005 390 βγ
151 Sm 88.8 0.5314 77 β

Europium-155 is a fission product with a half-life of 4.76 years. It has a maximum decay energy of 252 keV . In a thermal reactor (almost all current nuclear power plants ), it has a low fission product yield , about half of one percent as much as the most abundant fission products.

155 Eu's large neutron capture cross section (about 3900 barns for thermal neutrons , 16000 resonance integral ) means that most of even the small amount produced is destroyed in the course of the nuclear fuel 's burnup . Yield, decay energy, and half-life are all far less than that of 137 Cs and 90 Sr , so 155 Eu is not a significant contributor to nuclear waste .

Some 155 Eu is also produced by successive neutron capture on 153 Eu (nonradioactive, 350 barns thermal, 1500 resonance integral, yield is about 5 times as great as 155 Eu) and 154 Eu (half-life 8.6 years, 1400 barns thermal, 1600 resonance integral, fission yield is extremely small because beta decay stops at 154 Sm). However, the differing cross sections mean that both 155 Eu and 154 Eu are destroyed faster than they are produced.

154 Eu is a prolific emitter of gamma radiation . [8]

Isotope Half-life Relative yield Thermal neutron Resonance integral
Eu-153 Stable 5 350 1500
Eu-154 8.6 years Nearly 0 1500 1600
Eu-155 4.76 years 1 3900 16000

References [ edit ]

  1. ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF) . Chinese Physics C . 45 (3): 030001. doi : 10.1088/1674-1137/abddae .
  2. ^ "Standard Atomic Weights: Europium" . CIAAW . 1995.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Bohlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Groning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)" . Pure and Applied Chemistry . doi : 10.1515/pac-2019-0603 . ISSN   1365-3075 .
  4. ^ Belli, P.; et al. (2007). "Search for α decay of natural europium". Nuclear Physics A . 789 (1?4): 15?29. Bibcode : 2007NuPhA.789...15B . doi : 10.1016/j.nuclphysa.2007.03.001 .
  5. ^ Casali, N.; Nagorny, S. S.; Orio, F.; Pattavina, L.; et al. (2014). "Discovery of the 151 Eu α decay". Journal of Physics G: Nuclear and Particle Physics . 41 (7): 075101. arXiv : 1311.2834 . Bibcode : 2014JPhG...41g5101C . doi : 10.1088/0954-3899/41/7/075101 . S2CID   116920467 .
  6. ^ Danevich, F. A.; Andreotti, E.; Hult, M.; Marissens, G.; Tretyak, V. I.; Yuksel, A. (2012). "Search for α decay of 151 Eu to the first excited level of 147 Pm using underground γ-ray spectrometry". European Physical Journal A . 48 (157): 157. arXiv : 1301.3465 . Bibcode : 2012EPJA...48..157D . doi : 10.1140/epja/i2012-12157-7 . S2CID   118657922 .
  7. ^ a b c d e f Kiss, G. G.; Vitez-Sveiczer, A.; Saito, Y.; et al. (2022). "Measuring the β-decay properties of neutron-rich exotic Pm, Sm, Eu, and Gd isotopes to constrain the nucleosynthesis yields in the rare-earth region" . The Astrophysical Journal . 936 (107): 107. Bibcode : 2022ApJ...936..107K . doi : 10.3847/1538-4357/ac80fc . hdl : 2117/375253 .
  8. ^ "Archived copy" (PDF) . Archived from the original (PDF) on 2011-07-06 . Retrieved 2011-04-02 . {{ cite web }} : CS1 maint: archived copy as title ( link )