한국   대만   중국   일본 
Comparison of commercial battery types - Wikipedia Jump to content

Comparison of commercial battery types

From Wikipedia, the free encyclopedia

This is a list of commercially-available battery types summarizing some of their characteristics for ready comparison.

Common characteristics [ edit ]

Cell chemistry Also known as Electrode Re­charge­able Com­mercial­ized Voltage Energy density Specific power Cost Discharge efficiency Self-discharge rate Shelf life
Anode Electrolyte Cathode Cutoff Nominal 100% SOC by mass by volume
year V V V MJ/kg
(Wh/kg)
MJ/L
(Wh/L)
W/kg Wh/$
($/kWh)
% %/month years
Lead?acid SLA
VRLA
PbAc
Lead H 2 SO 4 Lead dioxide Yes 1881 [1] 1.75 [2] 2.1 [2] 2.23?2.32 [2] 0.11?0.14
(30?40) [2]
0.22?0.27
(60?75) [2]
180 [2] 5.44?13.99
(72?184)
[2]
50?92 [2] 3?20 [2]
Zinc?carbon Carbon?zinc Zinc NH 4 Cl Manganese (IV) oxide No 1898 [3] 0.75?0.9 [3] 1.5 [3] 0.13
(36) [3]
0.33
(92) [3]
10?27 [3] 2.49
(402)
[3]
50?60 [3] 0.32 [3] 3?5 [4]
Zinc?air PR KOH Oxygen No 1932 [5] 0.9 [5] 1.45?1.65 [5] 1.59
(442) [5]
6.02
(1,673) [5]
100 [5] 2.18
(460)
[5]
60?70 [5] 0.17 [5] 3 [5]
Mercury oxide?zinc Mercuric oxide
Mercury cell
NaOH/KOH Mercuric oxide No 1942? [6] 1996 [7] 0.9 [8] 1.35 [8] 0.36?0.44
(99?123) [8]
1.1?1.8
(300?500) [8]
2 [6]
Alkaline Zn/ MnO
2

LR
KOH Manganese (IV) oxide No 1949 [9] 0.9 [10] 1.5 [11] 1.6 [10] 0.31?0.68
(85?190) [12]
0.90?1.56
(250?434) [12]
50 [12] 0.39
(2574)
[12]
45?85 [12] 0.17 [12] 5?10 [4]
Rechargeable alkaline RAM KOH Yes 1992 [13] 0.9 [14] 1.57 [14] 1.6 [14] <1 [13]
Silver-oxide SR NaOH/KOH Silver oxide No 1960 [15] 1.2 [16] 1.55 [16] 1.6 [17] 0.47
(130) [17]
1.8
(500) [17]
Nickel?zinc NiZn KOH Nickel oxide hydroxide Yes 2009 [13] 0.9 [13] 1.65 [13] 1.85 [13] 13 [13]
Nickel?iron NiFe Iron KOH Yes 1901 [18] 0.75 [19] 1.2 [19] 1.65 [19] 0.07?0.09
(19?25) [20]
0.45
(125) [21]
100 3.31?4.41
(227?302)
[1]
20?30 30? [22] 50 [23] [24]
Nickel?cadmium NiCd
NiCad
Cadmium KOH Yes c. 1960 [25] 0.9?1.05 [26] 1.2 [27] 1.3 [26] 0.11
(30) [27]
0.36
(100) [27]
150?200 [28] 10 [13]
Nickel?hydrogen NiH
2

Ni-H
2
Hydrogen KOH Yes 1975 [29] 1.0 [30] 1.55 [28] 0.16?0.23
(45?65) [28]
0.22
(60) [31]
150?200 [28] 5 [31]
Nickel?metal hydride NiMH
Ni-MH
Metal hydride KOH| Yes 1990 [1] 0.9?1.05 [26] 1.2 [11] 1.3 [26] 0.36
(100) [11]
1.44
(401) [32]
250?1,000 2.65
(378)
[1]
30 [33]
Low self-discharge nickel?metal hydride LSD NiMH Yes 2005 [34] 0.9?1.05 [26] 1.2 1.3 [26] 0.34
(95) [35]
1.27
(353) [36]
250?1,000 0.42 [33]
Lithium?manganese dioxide Lithium
Li-MnO
2

CR
Li-Mn
Lithium Manganese dioxide No 1976 [37] 2 [38] 3 [11] 0.54?1.19
(150?330) [39]
1.1?2.6
(300?710) [39]
250?400 [39] 1 5?10 [39]
Lithium?carbon monofluoride Li-(CF)
x

BR
Carbon monofluoride No 1976 [37] 2 [40] 3 [40] 0.94?2.81
(260?780) [39]
1.58?5.32
(440?1,478) [39]
50?80 [39] 0.2?0.3 [41] 15 [39]
Lithium?iron disulfide Li-FeS
2

FR
Iron disulfide No 1989 [42] 0.9 [42] 1.5 [42] 1.8 [42] 1.07
(297) [42]
2.1
(580) [43]
10-20 [43]
Lithium?titanate Li
4
Ti
5
O
12

LTO
Lithium manganese oxide or Lithium nickel manganese cobalt oxide Yes 2008 [44] 1.6?1.8 [45] 2.3?2.4 [45] 2.8 [45] 0.22?0.40
(60?110)
0.64
(177)
3,000?5,100 [46] 0.39
(2539)
[46]
85 [46] 2?5 [46] 10?20 [46]
Lithium cobalt oxide LiCoO
2

ICR
LCO
Li?cobalt [47]
Graphite LiPF 6 /LiBF 4 / LiClO 4 Lithium cobalt oxide Yes 1991 [48] 2.5 [49] 3.7 [50] 4.2 [49] 0.70
(195) [50]
2.0
(560) [50]
2.21
(453)
[1]
Lithium iron phosphate LiFePO
4

IFR
LFP
Li?phosphate [47]
Lithium iron phosphate Yes 1996 [51] 2 [49] 3.2 [50] 3.65 [49] 0.32?0.58
(90?160) [50]
[52] [53]
1.20
(333) [50] [52]
200 [54] ?1,200 [55] 4.5 20 years [56]
Lithium manganese oxide LiMn
2
O
4

IMR
LMO
Li?manganese [47]
Lithium manganese oxide Yes 1999 [1] 2.5 [57] 3.9 [50] 4.2 [57] 0.54
(150) [50]
1.5
(420) [50]
2.21
(453)
[1]
Lithium nickel cobalt aluminium oxides LiNiCoAlO
2

NCA
NCR
Li?aluminium [47]
Lithium nickel cobalt aluminium oxide Yes 1999 3.0 [58] 3.6 [50] 4.3 [58] 0.79
(220) [50]
2.2
(600) [50]
Lithium nickel manganese cobalt oxide LiNi
x
Mn
y
Co
1-x-y
O
2

INR
NMC [47]
NCM [50]
Lithium nickel manganese cobalt oxide Yes 2008 [59] 2.5 [49] 3.6 [50] 4.2 [49] 0.74
(205) [50]
2.1
(580) [50]

^† Cost in USD, adjusted for inflation.

^‡ Typical. See Lithium-ion battery § Negative electrode for alternative electrode materials.

Rechargeable characteristics [ edit ]

Cell chemistry Charge efficiency Cycle durability
% # 100% depth of discharge (DoD) cycles
Lead?acid 50?92 [2] 50?100 [60] (500@40%DoD [2] [60] )
Rechargeable alkaline 5?100 [13]
Nickel?zinc 100 to 50% capacity [13]
Nickel?iron 65?80 5,000
Nickel?cadmium 70?90 500 [25]
Nickel?hydrogen 85 20,000 [31]
Nickel?metal hydride 66 300?800 [13]
Low self-discharge nickel?metal hydride battery 500?1,500 [13]
Lithium cobalt oxide 90 500?1,000
Lithium?titanate 85?90 6,000?10,000 to 90% capacity [46]
Lithium iron phosphate 90 2,500 [54] ?12,000 to 80% capacity [61]
Lithium manganese oxide 90 300?700

Thermal runaway [ edit ]

Under certain conditions, some battery chemistries are at risk of thermal runaway , leading to cell rupture or combustion. As thermal runaway is determined not only by cell chemistry but also cell size, cell design and charge, only the worst-case values are reflected here. [62]

Cell chemistry Overcharge Overheat
Onset Onset Runaway Peak
SOC% °C °C °C/min
Lithium cobalt oxide 150 [62] 165 [62] 190 [62] 440 [62]
Lithium iron phosphate 100 [62] 220 [62] 240 [62] 21 [62]
Lithium manganese oxide 110 [62] 210 [62] 240 [62] 100+ [62]
Lithium nickel cobalt aluminium oxide 125 [62] 140 [62] 195 [62] 260 [62]
Lithium nickel manganese cobalt oxide 170 [62] 160 [62] 230 [62] 100+ [62]

NiCd vs. NiMH vs. Li-ion vs. Li?polymer vs. LTO [ edit ]

Types Cell Voltage Self-discharge Memory Cycles Times Temperature Weight
NiCd 1.2V 20%/month Yes Up to 800 -20 °C to 60 °C Heavy
NiMH 1.2V 30%/month Mild Up to 500 -20 °C to 70 °C Middle
Low Self Discharge NiMH 1.2V 3%/year?1%/month No 500?2,000 -20 °C to 70 °C Middle
Li-ion (LCO) 3.6V 5?10%/month No 500?1,000 -20 °C to 60 °C Light
LiFePO 4 (LFP) 3.2V 2?5%/month No 2,500?12,000 [61] -20 °C to 60 °C Light
LiPo (LCO) 3.7V 5?10%/month No 500?1,000 -20 °C to 60 °C Lightest
Li?Ti (LTO) 2.4V 2?5%/month [46] No 6,000?20,000 -40 °C to 75 °C Light

[63]

See also [ edit ]

References [ edit ]

  1. ^ a b c d e f g "mpoweruk.com: Accumulator and battery comparisons (pdf)" (PDF) . Retrieved 2016-02-28 .
  2. ^ a b c d e f g h i j k "All About Batteries, Part 3: Lead-Acid Batteries" . Retrieved 2016-02-26 .
  3. ^ a b c d e f g h i "All About Batteries, Part 5: Carbon Zinc Batteries" . Retrieved 2016-02-26 .
  4. ^ a b "Energizer Non-Rechargeable Batteries: Frequently Asked Questions" (PDF) . Archived from the original (PDF) on 2016-04-04 . Retrieved 2016-02-26 .
  5. ^ a b c d e f g h i j "All About Batteries, Part 6: Zinc-Air" . Retrieved 2016-03-01 .
  6. ^ a b Narayan, R.; Viswanathan, B. (1998). Chemical And Electrochemical Energy Systems . Universities Press. p. 92. ISBN   9788173710698 .
  7. ^ "Mercury Use in Batteries" . Archived from the original on 2012-11-29 . Retrieved 2016-03-01 .
  8. ^ a b c d Crompton, Thomas Roy (2000). Batteries Reference Book . Newnes. ISBN   9780750646253 . Retrieved 2016-03-01 .
  9. ^ Herbert, W. S. (1952). "The Alkaline Manganese Dioxide Dry Cell" . Journal of the Electrochemical Society . 99 (August 1952): 190C. doi : 10.1149/1.2779731 .
  10. ^ a b "Alkaline Manganese Dioxide Handbook and Application Manual" (PDF) . Archived from the original (PDF) on 2010-12-16 . Retrieved 2016-03-01 .
  11. ^ a b c d "Primary and Rechargeable Battery Chemistries with Energy Density" . Retrieved 2016-02-26 .
  12. ^ a b c d e f "All About Batteries, Part 4: Alkaline Batteries" . Retrieved 2016-02-26 .
  13. ^ a b c d e f g h i j k l "Rechargeable Batteries ? compared and explained in detail" . Retrieved 2016-02-28 .
  14. ^ a b c "Data Sheet of Pure Energy XL Rechargeable Alkaline Cells" (PDF) . Retrieved 2016-03-01 .
  15. ^ "The history of the battery: 2) Primary batteries" . Archived from the original on 2018-05-26 . Retrieved 2016-03-01 .
  16. ^ a b "Silver Primary Cells & Batteries" (PDF) . Archived from the original (PDF) on December 15, 2009 . Retrieved 2016-03-01 .
  17. ^ a b c "ProCell Silver Oxide battery chemistry" . Duracell . Archived from the original on 2009-12-20 . Retrieved 2009-04-21 .
  18. ^ "Edison's non-toxic nickel-iron battery revived in ultrafast form" . Wired UK . Retrieved 2016-02-28 .
  19. ^ a b c "Nickel-Iron Power 6 cell" (PDF) . Archived from the original on 2012-03-07 . Retrieved 2017-03-19 . {{ cite web }} : CS1 maint: bot: original URL status unknown ( link )
  20. ^ "Energy Density from NREL Testing by Iron Edison" . Archived from the original (PDF) on 2016-10-20 . Retrieved 2016-02-26 .
  21. ^ Jha, A.R. (2012-06-05). Next-Generation Batteries and Fuel Cells for Commercial, Military, and Space Applications . CRC Press. p. 28. ISBN   978-1439850664 .
  22. ^ "Nickel Iron Batteries" . www.mpoweruk.com .
  23. ^ "A description of the Chinese nickel?iron battery from BeUtilityFree" (PDF) . Archived from the original (PDF) on July 25, 2021.
  24. ^ "NiFe FAQ's" . www.beutilityfree.com . Archived from the original on 2016-02-21 . Retrieved 2016-02-27 .
  25. ^ a b "Nickel Cadmium Batteries" . Electropaedia . Woodbank Communications . Retrieved 2016-02-29 .
  26. ^ a b c d e f "Testing NiCd and NiMH Batteries" . Retrieved 2016-03-01 .
  27. ^ a b c Arther, Miller (26 February 2016). "Ons werk" . Diensten (in Dutch) . Retrieved 2016-02-26 .
  28. ^ a b c d "Optimization of spacecraft electrical power subsystems" (PDF) . Retrieved 2016-02-29 .
  29. ^ "Nickel-Hydrogen Battery Technology?Development and Status" (PDF) . Archived from the original (PDF) on 2009-03-18 . Retrieved 2012-08-29 .
  30. ^ Thaller, Lawrence H.; Zimmerman, Albert H. (2003). Nickel-hydrogen Life Cycle Testing . AIAA. ISBN   9781884989131 .
  31. ^ a b c Arther, Miller (23 May 2014). "Ons werk" . DoubleSmart (in Dutch) . Retrieved 12 January 2019 .
  32. ^ "Ansmann AA ? NiMH 2700mAh datasheet" (PDF) . Retrieved 2016-03-02 .
  33. ^ a b "AA Battery Considerations" . Retrieved 2016-03-01 .
  34. ^ "General Description" . Eneloop.info . Sanyo . Archived from the original on 2012-09-02 . Retrieved 2015-08-06 .
  35. ^ "Metero Webinar 2" . Archived from the original on 2016-03-11 . Retrieved 2016-03-02 .
  36. ^ "SANYO new Eneloop Batteries Remains Energy Longer" (PDF) . Archived from the original (PDF) on 2016-03-04 . Retrieved 2016-03-02 .
  37. ^ a b Dyer, Chris K; Moseley, Patrick T; Ogumi, Zempachi; Rand, David A. J.; Scrosati, Bruno (2013). Encyclopedia of Electrochemical Power Sources . Newnes. p. 561. ISBN   978-0444527455 . Retrieved 2016-03-03 .
  38. ^ "Lithium Manganese Dioxide Batteries CR2430" (PDF) . Retrieved 2016-03-01 .
  39. ^ a b c d e f g h "Li/CFx Batteries: The Renaissance" (PDF) . Retrieved 2019-02-24 .
  40. ^ a b "Chapter 1 Overview - Industrial Devices and Solutions" (PDF) . Archived from the original (PDF) on 2016-03-06 . Retrieved 2016-03-03 .
  41. ^ "Lithium Carbon-monofluoride (BR) Coin Cells and FB Encapsulated Lithium Coin Cells" . Archived from the original on 2015-03-30 . Retrieved 2016-03-03 .
  42. ^ a b c d e "Lithium Iron Disulfide Handbook and Application Manual" (PDF) . Archived from the original (PDF) on 2006-03-17 . Retrieved 2016-03-03 .
  43. ^ a b "Energizer's Lithium Iron Disulfide ? The best of all worlds for the most demanding applications" (PDF) . Archived from the original (PDF) on 2016-03-06 . Retrieved 2016-03-03 .
  44. ^ "LTO Anode Material for Lithium-ion Battery Manufacturing" . Retrieved 2018-12-16 .
  45. ^ a b c Gotcher, Alan J. (29 November 2006). "Altair EDTA Presentation" (PDF) . Altairnano.com. Archived from the original (PDF) on 16 June 2007.
  46. ^ a b c d e f g "All About Batteries, Part 12: Lithium Titanate (LTO)" . Retrieved 2018-12-16 .
  47. ^ a b c d e "Battery chemistry FINALLY explained" . Archived from the original on 2016-02-12 . Retrieved 2016-02-26 .
  48. ^ "Hooked on lithium" . The Economist . Retrieved 2016-02-26 .
  49. ^ a b c d e f "Comparison Common Lithium Technologies" (PDF) . Archived from the original (PDF) on 2016-12-22 . Retrieved 2016-12-21 .
  50. ^ a b c d e f g h i j k l m n o p "Lithium Battery Technologies" . Retrieved 2016-02-26 .
  51. ^ " LiFePO
    4
    : A Novel Cathode Material for Rechargeable Batteries", A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Electrochemical Society Meeting Abstracts, 96-1 , May, 1996, pp 73
  52. ^ a b "Great Power Group, Square lithium-ion battery" . Archived from the original on 2020-08-03 . Retrieved 2019-12-31 .
  53. ^ "Lithium Battery Mystery: This 100Ah LiFePO4 Energy Density is Off the Charts" . YouTube . Retrieved 2019-12-31 .
  54. ^ a b "Archived copy" (PDF) . Archived from the original (PDF) on 2016-09-21 . Retrieved 2016-04-20 . {{ cite web }} : CS1 maint: archived copy as title ( link )
  55. ^ "Datasheet HeadWay LiFePO4 38120" (PDF) . Retrieved 2020-04-08 .
  56. ^ "Which battery type is right for you?" . Retrieved 2021-08-11 .
  57. ^ a b "Lithium-ion Battery Overview" (PDF) . Lighting Global (May 2012, Issue 10). Archived from the original (PDF) on 2014-06-17 . Retrieved 2016-03-01 .
  58. ^ a b "Lithium nickel cobalt aluminium oxide" . Retrieved 2016-03-01 .
  59. ^ "Battery Technology" . Retrieved 2016-02-26 .
  60. ^ a b electricrider.com: Lithium Batteries Citat: Citat: "...The cycle life of sealed lead-acid is directly related to the depth of discharge. The typical number of discharge/charge cycles at 25 °C (77 °F) with respect to the depth of discharge is: * 50?100 cycles with 100% depth of discharge (full discharge) * 150?250 cycles with 70% depth of discharge (deep discharge) * 300?500 cycles with 50% depth of discharge (partial discharge) * 800 and more cycles with 30% depth of discharge (shallow discharge)..."
  61. ^ a b "CATL wants to deliver LFP batteries for ESS at 'multi-gigawatt-hour scale' into Europe and US-CATL" . catlbattery.com . Contemporary Amperex Technology Co. Limited (CATL). Archived from the original on 4 April 2023 . Retrieved 3 October 2020 .
  62. ^ a b c d e f g h i j k l m n o p q r s t u Doughty, Dan; Roth, E. Peter (2012). "A General Discussion of Li Ion Battery Safety" (PDF) . The Electrochemical Society Interface . 21 (Summer 2012): 37. Bibcode : 2012ECSIn..21b..37D . doi : 10.1149/2.F03122if . Retrieved 2016-02-27 .
  63. ^ Resende, Caio (3 November 2017). "Best Power Tool Battery Types: NiCd VS NiMH VS li-ion VS li-polymer" .