Dies ist ein als lesenswert ausgezeichneter Artikel.

Krebsnebel

aus Wikipedia, der freien Enzyklopadie
Zur Navigation springen Zur Suche springen
Supernovauberrest
Daten des Krebsnebels
Infrarotaufnahme des Krebsnebels mithilfe des James-Webb-Weltraumteleskops: Die Struktur des Pulsarwind-Nebels ist bläulich-weißlich erkennbar, die der Filamente und der Staubverteilung orange-rot.[1]
Infrarotaufnahme des Krebsnebels mithilfe des James-Webb-Weltraumteleskops : Die Struktur des Pulsarwind-Nebels ist blaulich-weißlich erkennbar, die der Filamente und der Staubverteilung orange-rot. [1]
Sternbild Stier
Position
Aquinoktium : J2000.0
Rektaszension 05h 34m 32,0s [2]
Deklination +22° 00′ 52″ [2]
Weitere Daten
Helligkeit   (visuell)

8,4 mag [3]

Winkelausdehnung

6′ × 4′ [3]

Entfernung

1900 Parsec [4]

Beginn der Ausbildung (Jahr)

1054

Durchmesser 11 × 7 Lj
Geschichte
Entdeckung

John Bevis

Datum der Entdeckung

1731

Katalogbezeichnungen
M  1 ? NGC  1952 ? IRAS  05314+2200 ? Sh 2?244
AladinLite

Der Krebsnebel (seltener Krabbennebel , fruher auch Crab-Nebel [5] von englisch Crab Nebula , katalogisiert als M 1 und NGC 1952 ) im Sternbild Stier ist der Uberrest der im Jahr 1054 beobachteten Supernova , in dem sich ein Pulsarwind-Nebel gebildet hat. Er befindet sich im Perseus-Arm der Milchstraße und ist etwa 1900 Parsec (6200 Lichtjahre ) von der Erde entfernt.

Der mit fast 1500 Kilometer pro Sekunde expandierende Nebel ist von ovaler Gestalt mit einer Lange von 6 Bogenminuten und einer Breite von 4 Bogenminuten. In seinem Zentrum befindet sich der aus dem explodierten Ursprungsstern hervorgegangene Neutronenstern , der etwa 30 mal pro Sekunde (33 ms Periodendauer [6] ) um seine Achse rotiert und im Radiofrequenzbereich sowie im optischen, Rontgen- und Gammafrequenzbereich als Pulsar (sog. Krebs- oder Crabpulsar ) nachweisbar ist. Der ihn umgebende Nebel ist von Filamenten durchzogen, die aus den außeren Schalen des Ursprungssterns entstanden sind und zum großten Teil aus ionisiertem Wasserstoff und Helium bestehen. Hinzu kommen kleinere Anteile von Kohlenstoff , Sauerstoff , Stickstoff , Eisen , Neon und Schwefel , teilweise auch in Form von Staub.

Wegen seiner geringen scheinbaren Helligkeit kann der Krebsnebel nur durch Teleskope beobachtet werden und wurde erst mit deren systematischem Einsatz im 18. Jahrhundert entdeckt. Durch seine Nahe und als einer der jungsten galaktischen Pulsarwind-Nebel gehort er seitdem zu den am intensivsten in der Astronomie erforschten Objekten. [7] [8]

Entdeckung und Erscheinungsbild des Nebels

[ Bearbeiten | Quelltext bearbeiten ]

Die nebelartige Erscheinung wurde im Jahr 1731 von John Bevis wahrend der Anfertigung von Sternkarten sowie, davon unabhangig, von Charles Messier auf der Suche nach Kometen im August 1758 entdeckt. Wahrend die Entdeckung von Bevis lange unveroffentlicht blieb, war es fur Messier der Ausloser zur Erstellung seines Katalogs von Nebeln und Sternhaufen , in dem der Krebsnebel als erstes Objekt eingeordnet ist. Seine Form wird darin einer Kerzenflamme ahnelnd beschrieben.

Eine Abbildung des Nebels veroffentlichte John Herschel im Jahr 1833, die den Nebel als ovalen Sternhaufen zeigte ? einen Aufbau, den er aufgrund einer von ihm erkannten Sprenkelung irrtumlich vermutete. [9] Lord Rosse konnte den Nebel mit seinem großen Spiegelteleskop detailliert beobachten und publizierte eine Zeichnung im Jahr 1844. Ihm wird auch die Benennung als Krebsnebel haufig zugeschrieben, jedoch wurde die Ahnlichkeit der Filamente mit den Extremitaten eines Krebses , die in dieser Zeichnung besonders ausgepragt ist, von Thomas Romney Robinson schon fruher angedeutet. [10] Gegen Ende des 19. Jahrhunderts publizierte Isaac Roberts , ein Pionier der Astrofotografie , erste Aufnahmen des Krebsnebels und befand, dass der Nebel auf seinen Aufnahmen den zuvor bekannten Zeichnungen nicht ahnelte. [11] [12]

Spektroskopische Untersuchungen in den 1910er Jahren von Vesto Slipher zeigten aufgrund von charakteristischen Spektrallinien , dass der Nebel aus Wasserstoff und Helium besteht. Er bemerkte, dass diese Spektrallinien aufgespalten sind, und vermutete den Stark-Effekt als Ursache. [13] Roscoe Frank Sanford uberlegte kurz darauf, dass auch entgegengesetzte Dopplerverschiebungen mit Geschwindigkeiten von ?600 bis ?1000 km/s und 1620 bis 1750 km/s die Aufspaltung erklaren. Bei seinen Untersuchungen erkannte er zudem, dass der hellste Bereich blau leuchtet und ein kontinuierliches Spektrum besitzt. [14] Diese Resultate wurden spater von Walter Baade durch Aufnahmen mit schmalbandigen Filtern bestatigt, die zudem zeigten, dass der helle blauliche Bereich im Zentrum liegt und etwa 80 % der Helligkeit des Nebels ausmachte, wahrend die Linienspektren von den Filamenten herruhrten. [15]

Im Jahr 1921 entdeckte Carl Otto Lampland anhand von verschieden weit zuruckliegenden Aufnahmen, dass sich die Struktur insbesondere im Zentrum des Krebsnebels uber die Zeit hinweg verandert ? eine Eigenschaft, die bis auf drei andersartige Ausnahmen bei sonst keinem Nebel gefunden wurde. [16]

Aufmerksam geworden durch die Entdeckung Lamplands bestatigte John Charles Duncan kurz darauf anhand weiterer Aufnahmen die Veranderung im Krebsnebel und erkannte zudem, dass es sich bei der Veranderung im außeren Bereich um eine Expansion handelt. [17] Parallel dazu fiel Knut Lundmark auf, dass der Krebsnebel nahe der in chinesischen Schriften verzeichneten Nova aus dem Jahr 1054 liegt. [18] Sieben Jahre spater, 1928, schloss Edwin Hubble durch Zuruckberechnung der Expansion auf diese Nova vor rund 900 Jahren. [19]

Rund zehn Jahre spater bestimmte Nicholas Ulrich Mayall anhand der Doppleraufspaltung der Spektrallinien die tatsachliche Ausdehnungsgeschwindigkeit zu 1300 km/s und ermittelte durch Vergleich mit der scheinbaren Expansion die Entfernung von 1500 Parsec (4900 Lichtjahre ). [20] Walter Baade und Knut Lundmark erkannten daraufhin, dass es sich aufgrund der großen Distanz zusammen mit der im Jahr 1054 beobachteten hohen Helligkeit um eine sogenannte Supernova handeln musse, der Krebsnebel so aus einem Stern entstanden ist: [21] Nur wenige Jahre zuvor hatte Walter Baade zusammen mit Fritz Zwicky postuliert, dass es neben einer Nova eine viel leuchtkraftigere, aber seltenere ?Super-nova“ geben kann. Bei dieser explodiert ein massereicher Stern, wobei sich aus seinen außeren Schichten ein expandierender Nebel bildet, wahrend sein Kern zu einem Neutronenstern kollabiert. [22] [23]

Der im Zentrum des Nebels vermutete Neutronenstern wurde durch spektroskopische Untersuchungen von Rudolph Minkowski Anfang der 1940er Jahre bestatigt. Die Spektroskopien deuteten auf etwa eine Sonnenmasse bei einem Durchmesser von hochstens 2 % der Sonne und somit eine zumindest 180.000-fache Dichte und ? was ihn von einem weißen Zwerg unterscheidet ? eine Temperatur von 500.000 Kelvin . Zudem ergab sich die 30.000-fache Leuchtkraft der Sonne unter der Annahme, dass der Neutronenstern außerhalb des sichtbaren Spektrums dem Nebel dessen abgestrahlte Energie liefert; im sichtbaren Spektrum erreicht der Neutronenstern nur 16  mag . [24]

Die Supernova ordnete Minkowski nach einem kurz zuvor von ihm entworfenen phanomenologischen Klassifikationssystem [25] dem Typ I zu. [24] Mit dem schrittweise verfeinerten und um physikalische Modelle erganzten Klassifikationssystem wurde jedoch der Typ II-P immer plausibler. [26] [27] [28] [29]

Synchrotronstrahlung

[ Bearbeiten | Quelltext bearbeiten ]

Im Jahr 1948 fand John Gatenby Bolton mit weiteren Wissenschaftlern an der Position des Nebels die Radioquelle Taurus A [30] [31] , und erkannte, dass die hohe Intensitat wahrscheinlich nicht durch thermische Prozesse hervorgerufen wird. Hannes Alfven und Nicolai Herlofson schlugen kurz darauf eine Synchrotronstrahlung als Erklarung vor, die von fast lichtschnellen Elektronen in einem starken Magnetfeld hervorgerufen wird. [32] Im Jahr 1953 vermutete Iosef Shklovsky , dass auch das blaue Leuchten des Zentrums durch Synchrotronstrahlung hervorgerufen wird und dieses aufgrund des Magnetfelds polarisiert ist. [33] Diese Polarisation wurde im Folgejahr nachgewiesen, die Quelle der Elektronen und des Magnetfelds blieben jedoch lange Gegenstand einer Kontroverse. [34] [35]

Gammastrahlung der Himmelssphare : In der Bildmitte das galaktische Zentrum ; ganz rechts, hell, der Krebsnebel

Erste rontgenastronomische Beobachtungen , die nur außerhalb der Atmosphare moglich sind, wurden ab 1963 mit Aerobee -Raketen durchgefuhrt. Dabei wurden im Energiebereich zwischen 1,5 keV und 8 keV zunachst nur zwei sehr helle Rontgenquellen entdeckt und der Krebsnebel mit einer von ihnen, Taurus X-1, identifiziert. [36] Dies gab auch Evidenzen fur den Neutronenstern als Ursache des Magnetfeldes. [37] Im Jahr 1967 erkannte man durch Instrumente an einem Hohenballon, dass es eine der starksten Quellen fur Gammastrahlung im Bereich bis 560 keV ist. [38] Zu dieser Zeit begann man auch, Gammastrahlung bis in den Teraelektronenvolt-Energiebereich mit Hilfe von Tscherenkow-Teleskopen zu untersuchen und konnte diese im Laufe der 1970er Jahre immer deutlicher nachweisen. [39] [40] [41] Beobachtungen mithilfe des Fermi Gamma-ray Space Telescope zeigten zudem ein gelegentliches, mehrere Tage anhaltendes starkes Auflodern der Aktivitat. [42] [43] Im Jahr 2019 konnte Gammastrahlung mit uber 100 TeV aus dem Krebsnebel nachgewiesen werden, womit er die erste bekannte Quelle derartiger Strahlung ist; [44] im Jahr 2021 wurden Photone mit PeV-Energie mithilfe des Large High Altitude Air Shower Observatory detektiert. [45]

Lichtkurve und Zeitlupenaufnahme des Pulsars im Zentrum des Krebsnebels. Aufnahme mit Einzelquantenkamera am 80-cm-Teleskop des Wendelstein-Observatoriums , Dr. F. Fleischmann, 1998

Mitte der 1960er Jahre uberlegte Lodewijk Woltjer , dass ein Neutronenstern den magnetischen Fluss des Vorgangersterns zu einem enorm starken Magnetfeld in sich bundeln konnte. [37] Etwas spater folgerte Franco Pacini , dass, wenn dieser auch den Drehimpuls des Vorgangersterns behalt und durch die Kontraktion schnell rotiert , er wie ein Dynamo riesige Energiemengen in den umgebenden Nebel abgibt. [46]

Sequenz von Aufnahmen des Krebsnebel-Pulsars (rechts im Bild): Zeitlupe des sich alle 33 ms wieder­holenden Haupt- und Nebenpulses

Motiviert durch den Bericht im Jahr 1968 uber den ersten Pulsar  ? ein derartiger, zu pulsieren scheinender Neutronenstern [47]  ? durchmusterten David H. Staelin und Edward C. Reifenstein den Himmel und entdeckten im Bereich des Krebsnebels ? und moglicherweise zu ihm gehorend ? zwei pulsierende Radioquellen. Die Entdeckung erfolgte mit dem 90-Meter-Radioteleskop in Green Bank . [48] [49] Sie bezeichneten die Radioquellen mit NP 0527 und NP 0532. NP 0527 erwies sich schließlich als deutlich alter als die Supernova aus dem Jahr 1054, [50] aber NP 0532 konnte als zum Krebsnebel zugehorig identifiziert werden. Die Pulsperiode von 33,09 ms und deren langsame Zunahme konnten bereits kurz nach der Entdeckung mit Hilfe des dreimal so großen Radioteleskop am Arecibo-Observatorium bestimmt werden. [51] [52] Ein Vergleich zeigte, dass der entsprechend der beobachteten Pulsation rotierende Neutronenstern mit einem Magnetfeld von 100.000.000 Tesla eine Leistung abgibt, die der durch Verlangsamung der Rotation freiwerdenden Rotationsenergie und zugleich etwa der gesamten Synchrotronstrahlung entspricht, wenn man einen Durchmesser des Pulsars von 24 km zugrunde legt; der Krebsnebel bezieht somit seine Energie aus dem allmahlich langsamer rotierenden Neutronenstern wie aus einem Schwungrad . [53]

Das Pulsieren konnte auch in anderen Spektralbereichen nachgewiesen werden. Bereits im Jahr 1969 wurde im optischen Bereich der Pulsar PSR B0531+21 mit dem Zentralstern des Krebsnebels identifiziert, [54] kurz darauf im gleichen Jahr auch im Rontgenbereich. [55] Die Pulse weisen einen Hauptpuls und einen Nebenpuls auf, wobei die Pulsform und Pulshohe vom Spektralbereich abhangen; bei Gammastrahlung kann der Nebenpuls hoher als der Hauptpuls ausfallen. Es gibt verschiedene Modelle des Pulsars, die diese Abstrahlung mit diesen Pulsformen beschreiben; bei einem ist beispielsweise das Magnetfeld um 45° gegen die Rotationsachse und diese um 67° gegen die Beobachtungsrichtung geneigt. [56] Allerdings kann die Intensitat dieser Pulse auch vereinzelt in einem Maße hoher ausfallen, wie es bei sehr wenigen anderen Pulsaren beobachtet wurde. Diese Pulse hoherer Intensitat werden als Giant Pulse bezeichnet und treten mit der zehnfachen Energie im Mittel etwa alle zehn Minuten auf, [57] konnen aber auch mit der 2000-fachen Energie auftreten. [58] Nachfolgende Untersuchungen zeigten, dass sie teilweise nur 2 Nanosekunden lange Subpulse enthalten, so dass der Emissionsbereich kleiner als 1 Meter sein muss. [59] Der Entstehungsmechanismus ist noch nicht umfassend geklart. [60]

Rontgenstrahlung des Krebsnebels im Energiebereich 0,5?7,0 keV, Chandra-Weltraumteleskop

Aufgrund der Beobachtungen vermutete bereits im Jahr 1969 Wallace Hampton Tucker , dass ein sogenannter Pulsarwind aus den fast lichtschnellen geladenen Teilchen beim Auftreffen auf den umgebenden Nebel zu leuchten beginnt, [61] und funf Jahre spater prazisierten Martin John Rees und James Edward Gunn , dass die relativistischen Elektronen und Positronen im toroidalen magnetischen Feld um den Pulsar entstehen und die Synchrotronstrahlung einsetzt, sobald diese mit dem Nebel kollidieren. [62] [63] Entlang der Rotationsachse bilden sich zudem durch das Magnetfeld geformte Jets aus relativistischen geladenen Teilchen, wie im Jahr 1984 berechnet wurde. [64] Rund 10 Jahre spater konnten diese Jets im Rontgen- und optischen Bereich mittels der nunmehr verfugbaren hochauflosenden Teleskope ROSAT , Hubble-Weltraumteleskop und Chandra-Weltraumteleskop nachgewiesen werden. [65]

Zentrum des Krebsnebels , Uberlagerung von Aufnahmen in den Bereichen des sichtbaren Lichts (rot) und der Rontgenstrahlen (blau). Man erkennt den eingebetteten Pulsar .

Nach neueren Untersuchungen wird fur den Pulsar im Krebsnebel ein Durchmesser von 28 bis 30 km angenommen. [66] Damit ergibt sich eine Energieabgabe von etwas mehr als dem 100.000-Fachen der Sonne. [66] Die hohe abgestrahlte Energiemenge erzeugt die von Lampland [16] entdeckte extrem dynamische Region im Zentrum des Krebsnebels, die sich mit dem hochauflosenden Hubble-Weltraumteleskop und dem Chandra-Weltraumteleskop eingehend beobachten lasst: Wahrend die meisten Veranderungen von astronomischen Objekten so langsam geschehen, dass man sie erst nach vielen Jahren wahrnehmen kann, andert sich das Innere des Krebsnebels innerhalb weniger Tage. [67] Die Gebiete mit den starksten Veranderungen im inneren Teil des Nebels sind an dem Punkt, wo die Jets des Pulsars mit dem umgebenden Material kollidieren und eine Stoßwelle bilden. Zusammen mit dem aquatorialen Wind erscheinen sie als eine Serie von buschelahnlichen Gebilden, die steil hervorwachsen, aufleuchten und dann verblassen, wenn sie sich vom Pulsar weg- und in den Nebel hineinbewegen.

Bereits im Jahr 1942 berichtete Walter Baade von Aufnahmen der Filamente mit schmalbandigen Filtern, mit denen er deren Ionisation durch charakteristische Spektrallinien von Wasserstoff nachwies. [15] Durch genauere Untersuchungen der ebenfalls vorhandenen Spektrallinien von Sauerstoff und Helium konnte Donald Edward Osterbrock im Jahr 1957 deren Temperatur mit rund 15.000 Kelvin und Dichte mit 550 bis 3700 ionisierten Teilchen pro Kubikzentimeter bestimmen, [68] was weitere Untersuchungen bestatigten. [69] Kurz darauf vermutete man, dass die komplexe Gestalt der Filamente durch eine Rayleigh-Taylor-Instabilitat an der Grenzschicht zwischen Neutronenstern und abgestoßenem Supernovarest hervorgerufen wird. [70]

Neuere Untersuchungen zeigen, dass der Krebsnebel sich derzeit mit einer Geschwindigkeit von 1500 km/s ausdehnt. [71] Rechnet man die Expansion zuruck, erhalt man ein Datum fur die Bildung des Nebels, das auf mehrere Jahrzehnte nach 1054 verweist. Es scheint, als hatte sich der Nebel beschleunigt ausgedehnt. [72] Man vermutet, dass die notwendige Energie fur die Beschleunigung vom Pulsar stammt, der das Magnetfeld verstarkte, und dass dadurch die Filamente schneller vom Zentrum wegbewegt wurden. [46] [73] Unterschiede in der zuruckberechneten Expansion der Filamente und des Polarwindnebels stutzen zudem die Rayleigh-Taylor-Instabilitat als Erklarung der Filament-Morphologie. [7]

Abschatzungen der Masse des Krebsnebels waren anfangs wenig ubereinstimmend. Minkowski nannte im Jahr 1942 zu der etwa 1 Sonnenmasse fur den Neutronenstern weitere 15 Sonnenmassen fur den umgebenden Nebel. [24] Die Gesamtmasse der Filamente versuchte Osterbrock im Jahr 1957 zu bestimmen. [68] Der sich ergebende Wert von wenigen Prozenten der Sonnenmasse wurde jedoch von nachfolgenden Untersuchungen nicht bestatigt, die auf die ein- bis funffache Masse der Sonne hindeuten. [74] Aus theoretischen Modellen von Supernovaexplosionen wurde geschlossen, dass der Stern zuvor jedoch eine Masse zwischen acht und zwolf Sonnenmassen gehabt haben musste. [75] Lange vermutete man, dass die fur eine Supernova zusatzlich erforderliche Masse in einer Hulle um den Krebsnebel liegen konnte, welche aber trotz Suche in unterschiedlichen Wellenlangen nicht gefunden wurde. [74] [76] Unter Berucksichtigung von Staub, der im fernen Infrarot mit dem Herschel-Weltraumteleskop beobachtet werden konnte, folgerte man im Jahr 2015 eine Gasmasse von sieben Sonnenmassen und eine Staubmasse von etwas weniger als einer Sonnenmasse. Zusammen mit dem Pulsar, der etwas mehr als eine Sonnenmasse aufweist, ergeben sich somit insgesamt rund neun Sonnenmassen. [77] Neuere Analysen kommen jedoch zu einer um eine Großenordnung kleineren Staubmasse [78] oder zu einer etwas großeren Gesamtmasse von 9,5?10 Sonnenmassen. [79]

Eine genaue Bestimmung der Entfernung des Krebsnebels hat sich als schwierig erwiesen. Die von Mayall im Jahr 1937 beschriebene Methode zur Entfernungsbestimmung wurde vielfach nachvollzogen und lieferte je nach gewahltem Vorgehen Werte von 1030 Parsec bis 2860 Parsec. [80] [81] Anhand von Annahmen uber das interstellare Medium und den durch dieses hervorgerufenen Absorptionen in verschiedenen Spektralbereichen gelangte man auf einen sehr ahnlichen Wertebereich; physikalische Grunde, wie der Vergleich mit anderen Supernovae oder das Intensitatsverhaltnis von Emissionslinien, sprechen fur Entfernungen von 1800?2000 Parsec. [80] Da eine Reihe anderer etablierter Methoden zur Entfernungsbestimmung aufgrund von Besonderheiten des Krebsnebels versagt, wurde haufig der von Virginia Trimble aus den genannten Messungen um 1970 gemittelte Wert von 2000 ± 500 Parsec [80] genutzt. [82]

Im Jahr 2018 gelang mithilfe der Raumsonde Gaia eine optische Parallaxenbestimmung , die auf eine Entfernung von eher 3000 Parsec hindeutet und Entfernungen von weniger als 2400 Parsec unwahrscheinlich erscheinen ließ. [83] Langere Beobachtungen mit Gaia verminderten dann statistische Fehler, womit sich im Jahr 2020 eine Entfernung von 2000 Parsec mit einem 95%- Konfidenzintervall von 1620?2560 Parsec ergibt. [84] Im Jahr 2023 wurde die Parallaxe radioastronomisch mithilfe des European VLBI ermittelt und eine Entfernung von 1900 +220 -180 Parsec bestimmt. [4]

Transit von Korpern des Sonnensystems

[ Bearbeiten | Quelltext bearbeiten ]
Farbcodierte Animation verschiedener Spektralbereiche:
rot: Radiobereich (VLA) ; gelb: IR (Spitzer Space Telescope) ; grun: sichtbares Spektrum (HST) ; blau: UV (XMM-Newton) ; violett: Gammastrahlung (Chandra X-ray Observatory)

Da der Krebsnebel nur rund 1,5° von der Ekliptik entfernt ist, konnen der Mond und manchmal auch Planeten , von der Erde aus gesehen, diesen Nebel scheinbar am Himmel durchqueren oder streifen. Die Sonne selbst durchquert den Nebel nicht, dafur aber ihre Korona . Solche Ereignisse helfen, den Nebel und die Objekte vor dem Nebel besser zu erforschen, indem man untersucht, wie sich die Strahlung des Nebels andert.

Mondtransits wurden verwendet, um die Quellen der Rontgenstrahlen im Nebel zu finden. Bevor man Satelliten wie das Chandra X-Ray Observatory hatte, die die Rontgenstrahlung beobachten konnten, hatten Rontgenbeobachtungen meist eine geringe Auflosung. Wenn sich jedoch der Mond vor den Nebel schiebt, kann man die Helligkeitsanderungen des Nebels verwenden, um Karten der Rontgenstrahlenemission des Nebels anzufertigen. [85] Als man das erste Mal Rontgenstrahlen im Krebsnebel beobachtet hatte, wurde der Mond, als er den Nebel am Himmel streifte, verwendet, um die genaue Position der Rontgenstrahlung auszumachen. [36]

Die Sonnenkorona verdeckt den Krebsnebel jeden Juni. Durch Veranderungen der Radiowellen des Krebsnebels kann man auf die Dichte und Struktur der Sonnenkorona schließen. Die ersten Beobachtungen offenbarten, dass die Sonnenkorona viel ausgedehnter ist als bis dahin angenommen; spatere Beobachtungen zeigten, dass sie beachtliche Dichteschwankungen aufweist. [86]

Sehr selten wandert der Saturn vor dem Nebel voruber. Sein Transit am 4./5. Januar 2003 war der erste seit dem 31. Dezember   1295 jul. ; der nachste wird am 5. August 2267 stattfinden. Mit Hilfe des Chandra X-Ray Observatory wurde der Saturnmond Titan genauer untersucht. Dabei stellte sich heraus, dass auch um Titan Rontgenstrahlung emittiert wurde. Der Grund liegt in der Absorption der Rontgenstrahlung in seiner Atmosphare. Dadurch erhielt man fur die Dicke von Titans Atmosphare einen Wert von 880 km. [87] Der Saturntransit selbst konnte nicht beobachtet werden, da Chandra zu der Zeit den Van-Allen-Gurtel durchquerte.

Beobachtbarkeit

[ Bearbeiten | Quelltext bearbeiten ]

Beobachten lasst sich der Krebsnebel mit Teleskopen von Europa aus am besten in den Wintermonaten, da er sich dann weit oberhalb des Horizonts befindet: Die Kulmination fur 10° Ost ist am 4. Januar um 23 Uhr. [88] In Teleskopen mit 50 [89] ?75 mm Apertur erscheint er als ovaler Fleck, ab 130 mm sind weitere Strukturen zu erkennen. Die Filamente zeigen sich erst in einem Teleskop mit 400 mm Apertur bei einem guten Seeing von besser als 2 Bogensekunden . [88] Spektralfilter fur die O-III-Linie heben Strukturen hervor und Polarisationsfilter lassen die komplex ortlich variierenden Polarisationseffekte erkennen. [89] [90]

Es gibt Berichte uber die Beobachtung des Pulsierens des Pulsars durch das Okular eines großeren Teleskops. [91] [92]

  • Konig, Michael & Binnewies, Stefan (2023): Bildatlas der Sternhaufen & Nebel , Stuttgart: Kosmos, S. 270
  • R. Buhler, R. Blandford : The surprising Crab pulsar and its nebula: A review . In: Reports on Progress in Physics . Band   77 , Nr.   6 , 2014, bibcode : 2014RPPh...77f6901B .
  • Minas C. Kafatos, Richard B. C. Henry: The Crab Nebula and related supernova remnants. Cambridge University Press, Cambridge u. a. 1985, ISBN 0-521-30530-6 .
  • Simon Mitton: The Crab Nebula. Faber and Faber, London 1979, ISBN 0-684-16077-3 .
  • Rodney Deane Davies, Francis Graham-Smith (Hrsg.): The Crab Nebula. Reidel, Dordrecht 1971, ISBN 978-94-010-3087-8 .
Commons : Krebsnebel  ? Sammlung von Bildern und Videos
Wiktionary: Krebsnebel  ? Bedeutungserklarungen, Wortherkunft, Synonyme, Ubersetzungen

Einzelnachweise

[ Bearbeiten | Quelltext bearbeiten ]
  1. The Crab Nebula Seen in New Light by Webb , 2023
  2. NASA/IPAC EXTRAGALACTIC DATABASE
  3. a b Messier 1. In: messier.seds.org. 22. August 2007, abgerufen am 28. September 2019 (englisch).
  4. a b Rebecca Lin, Marten H. van Kerkwijk, Franz Kirsten , Ue-Li Pen , Adam T. Deller: The Radio Parallax of the Crab Pulsar: A First VLBI Measurement Calibrated with Giant Pulses . In: The Astrophysical Journal . Band   952 , Nr.   2 , 2023, S.   13 (id.161) , bibcode : 2023ApJ...952..161L .
  5. Crab-Nebel . In: Meyer großes Konversationslexikon . Band   4 , 1903, S.   329 ( archive.org ).
  6. ROSAT#Aktive_Zeit
  7. a b Michael F. Bietenholz, Richard L. Nugent: New expansion rate measurements of the Crab Nebula in radio and optical . In: Monthly Notices of the Royal Astronomical Society . Band   454 , Nr.   3 , 2015, S.   2416?2422 , bibcode : 2015MNRAS.454.2416B .
  8. Stephen P. Reynolds, Kazimierz J. Borkowski, Peter H. Gwynne: Expansion and Brightness Changes in the Pulsar-wind Nebula in the Composite Supernova Remnant Kes 75 . In: Astrophysical Journal . Band   856 , Nr.   2 , S.   1?12 , bibcode : 2018ApJ...856..133R .
  9. John Herschel : Observations of Nebulae and Clusters of Stars, Made at Slough, with a Twenty-Feet Reflector, between the Years 1825 and 1833 . In: Philosophical Transactions of the Royal Society of London . Volume II, 1833, S.   359?505 , doi : 10.1098/rstl.1833.0021 ( digitalisiert, s. Fig. 81 ).
  10. Michael Hoskin: Rosse, Robinson, and the Resolution of the Nebulae . In: Journal for the History of Astronomy . Band   21 , Nr.   4 , 1990, S.   331?344 , bibcode : 1990JHA....21..331H .
  11. Isaac Roberts : Photographs of the Region of the "Crab" Nebula, 1 M. Tauri . In: Monthly Notices of the Royal Astronomical Society . Band   52 , 1892, S.   502 , bibcode : 1892MNRAS..52..502R .
  12. Isaac Roberts: A Selection of Photographs of Stars, Star-clusters and Nebulae . Volume II. The Universal Press, London 1899, S.   164 ( digitalisiert ).
  13. Vesto Melvin Slipher : Spectrographic Observations of Nebulae and Star Clusters . In: Publications of the Astronomical Society of the Pacific . Band   28 , 1916, S.   191–192 . Digitalisiert ( Memento vom 13. Marz 2016 im Internet Archive )
  14. Roscoe Frank Sanford : Spectrum of the Crab Nebula . In: Publications of the Astronomical Society of the Pacific . Band   31 , Nr.   180 , 1919, S.   108?109 , bibcode : 1919PASP...31..108S .
  15. a b Walter Baade : The Crab Nebula . In: Astrophysical Journal . Band   96 , 1942, S.   188?198 , bibcode : 1942ApJ....96..188B .
  16. a b Carl Otto Lampland : Observed Changes in the Structure of the "Crab" Nebula (N. G. C. 1952) . In: Publications of the Astronomical Society of the Pacific . Band   33 , Nr.   192 , 1921, S.   79?84 , bibcode : 1921PASP...33...79L .
  17. John Charles Duncan : Changes Observed in the Crab Nebula in Taurus . In: Proceedings of the National Academy of Sciences . Band   7 , Nr.   6 , 1921, S.   179–180.1 , bibcode : 1921PNAS....7..179D .
  18. Knut Lundmark : Suspected New Stars Recorded in Old Chronicles and Among Recent Meridian Observations . In: Publications of the Astronomical Society of the Pacific . Band   33 , Nr.   195 , 1921, S.   225?238 , bibcode : 1921PASP...33..225L . , hier S. 234
  19. Edwin Hubble : Novae or Temporary Stars . In: Astronomical Society of the Pacific Leaflet . Band   1 , Nr.   14 , 1928, S.   55?58 , bibcode : 1928ASPL....1...55H .
  20. Nicholas Ulrich Mayall : The Spectrum of the Crab Nebula in Taurus . In: Publications of the Astronomical Society of the Pacific . Band   49 , Nr.   288 , 1937, S.   101?105 , bibcode : 1937PASP...49..101M .
  21. Walter Baade: The Absolute Photographic Magnitude of Supernovae . In: Astrophysical Journal . Band   88 , 1938, S.   285?304 , bibcode : 1938ApJ....88..285B .
  22. Walter Baade, Fritz Zwicky : On Super-novae . In: Contributions from the Mount Wilson Observatory . Band   3 , 1934, S.   73?78 , bibcode : 1934CoMtW...3...73B .
  23. Walter Baade, Fritz Zwicky: Cosmic Rays from Super-novae . In: Contributions from the Mount Wilson Observatory . Band   3 , 1934, S.   79?83 , bibcode : 1934CoMtW...3...79B .
  24. a b c Rudolph Minkowski : The Crab Nebula . In: Astrophysical Journal . Band   96 , 1942, S.   199?213 , bibcode : 1942ApJ....96..199M .
  25. Rudolph Minkowski: The Spectra of the Supernovae in IC 4182 and in NGC 1003 . In: Astrophysical Journal . Band   89 , 1939, S.   156?217 , bibcode : 1939ApJ....89..156M .
  26. Roger A. Chevalier : Was SN 1054 A Type II Supernova? 1977, S.   53?61 , bibcode : 1977ASSL...66...53C .
  27. F.S. Kitaura, H.-Th. Janka, W. Hillebrandt: Explosions of O-Ne-Mg Cores, the Crab Supernova, and Subluminous Type II-P Supernovae . In: Astronomy and Astrophysics . Band   450 , Nr.   1 , 2006, S.   345?350 , bibcode : 2006A&A...450..345K .
  28. Nathan Smith: The Crab Nebula and the class of Type IIn-P supernovae caused by sub-energetic electron capture explosions . In: Monthly Notices of the Royal Astronomical Society . Band   434 , Nr.   1 , 2013, S.   102?113 , bibcode : 2013MNRAS.434..102S .
  29. Takashi J. Moriya, Nozomu Tominaga, Norbert Langer, Ken’ichi Nomoto, Sergei I. Blinnikov, Elena I. Sorokina: Electron-capture supernovae exploding within their progenitor wind . In: Astronomy and Astrophysics . Band   569 , 2014, S.   1?8 , bibcode : 2014A&A...569A..57M .
  30. John G. Bolton , G. J. Stanley, O. B. Slee: Positions of three discrete sources of Galactic radio frequency radiation . In: Nature . Band   164 , Nr.   4159 , 1949, S.   101?102 , doi : 10.1038/164101b0 , bibcode : 1949Natur.164..101B .
  31. J. G. Bolton, G. J. Stanley: The Position and Probable Identification of the Source of the Galactic Radio-Frequency Radiation Taurus-A . In: Australian Journal of Scientific Research A . Band   2 , 1949, S.   139?148 , bibcode : 1949AuSRA...2..139B .
  32. Hannes Alfven , Nicolai Herlofson : Cosmic Radiation and Radio Stars . In: Physical Review . Band   78 , Nr.   5 , 1950, S.   616 , bibcode : 1950PhRv...78..616A .
  33. Iosef Shklovsky : On the Nature of the Crab Nebula’s Optical Emission . In: Doklady Akademii Nauk SSSR . Band   90 , 1953, S.   983 .
    Ins Englische ubersetzt in Lang, K. R., & Gingerich, O. 1979, A source book in astronomy and astrophysics, 1979
  34. Jan Hendrik Oort , Theodore Walraven : Polarization and composition of the Crab nebula . In: Bulletin of the Astronomical Institutes of the Netherlands . Band   12 , S.   285?308 , bibcode : 1956BAN....12..285O .
  35. J. H. Piddington: The Crab Nebula and the Origin of Interstellar Magnetic Fields . In: Australian Journal of Physics . Band   10 , 1957, S.   530?546 , bibcode : 1957AuJPh..10..530P .
  36. a b S. Bowyer , E. T. Byram, T. A. Chubb, H. Friedman : X-ray Sources in the Galaxy . In: Nature . Band   201 , Nr.   4926 , 1964, S.   1307?1308 , bibcode : 1964Natur.201.1307B .
  37. a b Lodewijk Woltjer : X-Rays and Type I Supernova Remnants . In: Astrophysical Journal . Band   140 , 1964, S.   1309?1313 , bibcode : 1964ApJ...140.1309W .
  38. R. C. Haymes, D. V. Ellis, G. J. Fishman, J. D. Kurfess, W. H. Tucker : Observation of Gamma Radiation from the Crab Nebula . In: Astrophysical Journal Letters . Band   151 , 1968, S.   L9?L14 , doi : 10.1086/180129 , bibcode : 1968ApJ...151L...9H .
  39. J. E. Grindlay: Very high-energy gamma ray astronomy . In: NASA. Goddard Space Flight Center The Structure and Content of the Galaxy and Galactic Gamma Rays . 1977, S.   81?98 , bibcode : 1977NASCP...2...81G .
  40. astronews.com: Uberraschende Strahlung aus dem Krebsnebel 7. Oktober 2011
  41. astronews.com: Energiereiche Strahlung aus dem Krebsnebel 14. Januar 2016
  42. astronews.com: Funkenschlag im Pulsarwind 22. November 2017
  43. NASA’s Fermi Spots ‘Superflares’ in the Crab Nebula
  44. M. Amenomori: First Detection of Photons with Energy Beyond 100 TeV from an Astrophysical Source . In: Physical Review Letters . Band   123 , Nr.   5 , 2019, S.   051101 , arxiv : 1906.05521 , bibcode : 2019PhRvL.123e1101A .
  45. Lhaaso Collaboration et al.: Peta-electron volt gamma-ray emission from the Crab Nebula . In: Science . Band   373 , 2021, S.   425?430 , bibcode : 2021Sci...373..425L .
  46. a b Franco Pacini : Energy Emission from a Neutron Star . In: Nature . Band   216 , Nr.   5115 , 1967, S.   567?568 , doi : 10.1038/216567a0 , bibcode : 1967Natur.216..567P .
  47. Thomas Gold : Rotating Neutron Stars as the Origin of the Pulsating Radio Sources . In: Nature . Band   218 , Nr.   5143 , 1968, S.   731?732 , doi : 10.1038/218731a0 , bibcode : 1968Natur.218..731G .
  48. David H. Staelin, Edward C. Reifenstein, III: Pulsating Radio Sources near Crab Nebula . In: International Astronomical Union Circulars . Nr.   2110 , 1968 ( archive.org ).
  49. David H. Staelin, Edward C. Reifenstein, III: Pulsating radio sources near the Crab Nebula . In: Science . Band   162 , Nr.   3861 , 1968, S.   1481?1483 , doi : 10.1126/science.162.3861.1481 , PMID 17739779 , bibcode : 1968Sci...162.1481S , JSTOR : 1725616 .
  50. D. W. Richards, J. A. Roberts: Timing of the Pulsar NP 0527 . In: Transactions of the International Astronomical Union . 1971, S.   211?216 , doi : 10.1017/S0074180900007464 .
  51. R. V. E. Lovelace, J. M. Sutton, H. D. Craft Jr.: Pulsar NP 0532 near Crab nebula . In: International Astronomical Union Circulars . Nr.   2113 , 1968 ( archive.org , s. S. 4 [PDF]).
  52. D. Richards: NP 0532 . In: International Astronomical Union Circulars . Nr.   2114 , 1968 ( archive.org ).
  53. Jeremiah P. Ostriker , James E. Gunn : On the Nature of Pulsars. I. Theory . In: The Astrophysical Journal . Band   157 , September 1969, S.   1395?1417 , bibcode : 1969ApJ...157.1395O .
  54. W. J. Cocke, M. J. Disney, D. J. Taylor: Discovery of Optical Signals from Pulsar NP 0532 . In: Nature . Band   221 , Nr.   5180 , 1969, S.   525?527 , bibcode : 1969Natur.221..525C .
  55. G. Fritz, R. C. Henry , J. F. Meekins, T. A. Chubb, H. Friedmann: X-ray Pulsar in the Crab Nebula . In: Science . Band   164 , Nr.   3880 , 1969, S.   709?712 , bibcode : 1969Sci...164..709F .
  56. Y. J. Du, G. J. Qiao, W. Wang: Radio-to-TeV Phase-resolved Emission from the Crab Pulsar: The Annular Gap Model . In: The Astrophysical Journal . Band   748 , Nr.   2 , 2012, S.   1?12 , bibcode : 2012ApJ...748...84D .
  57. I. R. Linscott, T. H. Hankins: High Frequency Observations of Giant Pulses from the Crab Pulsar . In: Bulletin of the American Astronomical Society . Band   12 , 1980, S.   820 , bibcode : 1980BAAS...12..820L .
  58. S. C. Lundgren, J. M. Cordes, M. Ulmer, S. M. Matz, S. Lomatch, R. S. Foster, T. Hankins: Giant Pulses from the Crab Pulsar: A Joint Radio and Gamma-Ray Study . In: Astrophysical Journal . Band   453 , 1995, S.   433?445 , bibcode : 1995ApJ...453..433L .
  59. T. H. Hankins, J. S. Kern, J. C. Weatherall, J. A. Eilek: Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar . In: Nature . 2003, S.   141?143 , bibcode : 2003Natur.422..141H .
  60. Axel Jessner, Mikhail V. Popov, Vladislav I. Kondratiev, Yuri Y. Kovalev, Dave Graham, Anton Zensus, Vladimir A. Soglasnov, Anna V. Bilous, Olga A. Moshkina: Giant pulses with nanosecond time resolution detected from the Crab pulsar at 8.5 and 15.1 GHz . In: Astronomy and Astrophysics . Band   524 , 2010, S.   1?13 , bibcode : 2010A&A...524A..60J .
  61. Wallace Hampton Tucker: Rotating Neutron Stars, Pulsars and Cosmic X-Ray Sources . In: Nature . Band   223 , Nr.   5212 , 1969, S.   1250?1252 , bibcode : 1969Natur.223.1250T .
  62. Martin John Rees , James Edward Gunn : The origin of the magnetic field and relativistic particles in the Crab Nebula . In: Monthly Notices of the Royal Astronomical Society . Band   167 , 1974, S.   1?12 , bibcode : 1974MNRAS.167....1R .
  63. R. Buhler, R. Blandford: The surprising Crab pulsar and its nebula: a review . In: Reports on Progress in Physics . Band   77 , Nr.   6 , 2014, bibcode : 2014RPPh...77f6901B .
  64. G. Benford: Magnetically ordered jets from pulsars . In: Astrophysical Journal . Band   282 , 1984, S.   154?160 , bibcode : 1984ApJ...282..154B .
  65. J. Jeff Hester, Paul A. Scowen, Ravi Sankrit, Christopher J. Burrows, John S. Gallagher, Jon A. Holtzman, Alan Watson, John T. Trauger, Gilda E. Ballester, Stefano Casertano, John T. Clarke, David Crisp, Robin W. Evans, Richard E. Griffiths, John G. Hoessel, John Krist, Roger Lynds, Jeremy R. Mould, J. Earl Jr. O’Neil, Karl R. Stapelfeldt, James A. Westphal : WFPC2 Studies of the Crab Nebula. I. HST and ROSAT Imaging of the Synchrotron Nebula . In: Astrophysical Journal . Band   448 , 1995, S.   240?263 , bibcode : 1995ApJ...448..240H .
  66. a b M. Bejger, P. Haensel: Moments of inertia for neutron and strange stars. Limits derived for the Crab pulsar . In: Astronomy and Astrophysics . Band   396 , 2002, S.   917?921 , bibcode : 2002A&A...396..917B .
  67. J. J. Hester, P. A. Scowen, R. Sankrit, F. C. Michel, J. R. Graham, A. Watson, J. S. Gallagher: The Extremely Dynamic Structure of the Inner Crab Nebula . In: Bulletin of the American Astronomical Society . Band   28 , 1996, S.   950 , bibcode : 1996AAS...188.7502H .
  68. a b Donald E. Osterbrock : Electron Densities in the Filaments of the Crab Nebula . In: Publications of the Astronomical Society of the Pacific . Band   69 , Nr.   408 , 1957, S.   227?230 , bibcode : 1957PASP...69..227O .
  69. R. A. Fesen, R. P. Kirshner : The Crab Nebula. I ? Spectrophotometry of the filaments . In: Astrophysical Journal . Nr.   258 , 1982, S.   1?10 , bibcode : 1982ApJ...258....1F .
  70. Russell Kulsrud , Ira B. Bernstein, Martin Krusdal, Jerome Fanucci, Nathan Ness: On the Explosion of a Supernova Into the Interstellar Magnetic Field. II . In: Astrophysical Journal . Band   142 , 1965, S.   491?506 , bibcode : 1965ApJ...142..491K .
  71. M. F. Bietenholz, P. P. Kronberg, D. E. Hogg, A. S. Wilson: The expansion of the Crab Nebula . In: Astrophysical Journal Letters . Band   373 , 1991, S.   L59?L62 , bibcode : 1991ApJ...373L..59B .
  72. Virginia Trimble: Motions and Structure of the Filamentary Envelope of the Crab Nebula . In: Astronomical Journal . Band   73 , 1968, S.   535?547 , bibcode : 1968AJ.....73..535T .
  73. M. Bejger, P. Haensel: Accelerated expansion of the Crab Nebula and evaluation of its neutron-star parameters . In: Astronomy and Astrophysics . Band   405 , 2003, S.   747?751 , bibcode : 2003A&A...405..747B .
  74. a b R. A. Fesen, J. M. Shull, A. P. Hurford: An Optical Study of the Circumstellar Environment Around the Crab Nebula . In: Astronomical Journal . Band   113 , 1997, S.   354?363 , bibcode : 1997AJ....113..354F .
  75. K. Davidson, R. A. Fesen: Recent developments concerning the Crab Nebula . In: Annual Review of Astronomy and Astrophysics . 23. Jahrgang, 1985, S.   119?146 , bibcode : 1985ARA&A..23..119D .
  76. D. A. Frail , N. E. Kassim, T. J. Cornwell, W. M. Goss: Does the Crab Have a Shell? In: Astrophysical Journal . Band   454 , 1995, S.   L129?L132 , bibcode : 1995ApJ...454L.129F .
  77. P. J. Owen, M. J. Barlow: The Dust and Gas Content of the Crab Nebula . In: Astrophysical Journal . Band   801 , Nr.   2 , 2015, S.   1?13 , bibcode : 2015ApJ...801..141O .
  78. I. De Looze, M. J. Barlow, R. Bandiera, A. Bevan, M. F. Bietenholz, H. Chawner, H. L. Gomez, M. Matsuura, F. Priestley, R. Wesson: The dust content of the Crab Nebula . In: Monthly Notices of the Royal Astronomical Society . Band   488 , Nr.   1 , S.   164?182 , bibcode : 2019MNRAS.488..164D .
  79. Adam R. Sibley, Andrea M. Katz, Timothy J. Satterfield, Steven J. Vanderveer, Gordon M. MacAlpine: Element Masses in the Crab Nebula . In: Astronomical Journal . Band   152 , Nr.   4 , 2016, S.   1?7 , bibcode : 2016AJ....152...93S .
  80. a b c Virginia Trimble : The Distance to the Crab Nebula and NP 0532 . In: Publications of the Astronomical Society of the Pacific . Band   85 , 1973, S.   579?585 , bibcode : 1973PASP...85..579T .
  81. Matthew J. Bester, Matteo J. Pari: Determination of the Distance to the Crab Nebula . In: Journal of Undergraduate Sciences . 1996, S.   57?62 ( archive.org [PDF]).
  82. D. L. Kaplan, S. Chatterjee, B. M. Gaensler, J. Anderson: A Precise Proper Motion for the Crab Pulsar, and the Difficulty of Testing Spin-Kick Alignment for Young Neutron Stars . In: Astrophysical Journal . Band   677 , Nr.   2 , 2008, S.   1201?1215 , bibcode : 2008ApJ...677.1201K .
  83. Morgan Fraser, Douglas Boubert: The Quick and the Dead: Finding the Surviving Binary Companions of Galactic Supernovae with Gaia . In: Astrophysical Journal . Band   871 , Nr.   1 , 2019, bibcode : 2019ApJ...871...92F .
  84. John Antoniadis: Gaia Pulsars and Where to Find Them in EDR3 . In: Research Notes of the AAS . Band   4 , Nr.   12 , 2020, bibcode : 2020RNAAS...4..223A .
  85. T. M. Palmieri, F. D. Seward, A. Toor, T. C. van Flandern : Spatial distribution of X-rays in the Crab Nebula . In: Astrophysical Journal . 202. Jahrgang, 1975, S.   494?497 , bibcode : 1975ApJ...202..494P .
  86. W. C. Erickson: The Radio-Wave Scattering Properties of the Solar Corona . In: Astrophysical Journal . 139. Jahrgang, 1964, S.   1290?1311 , bibcode : 1964ApJ...139.1290E .
  87. K. Mori, H. Tsunemi, H. Katayama, D. N. Burrows, G. P. Garmire, A. E. Metzger: An X-Ray Measurement of Titan’s Atmospheric Extent from Its Transit of the Crab Nebula . In: Astrophysical Journal . 607. Jahrgang, 2004, S.   1065?1069 , bibcode : 2004ApJ...607.1065M . Dazugehorige Aufnahmen des Chandra-Weltraumteleskops .
  88. a b Bernd Koch, Stefan Korth: Die Messier-Objekte: Die 110 klassischen Ziele fur Himmelsbeobachter . Kosmos, Stuttgart 2010, ISBN 978-3-440-11743-9 , S.   213 ( Volltext zu S. 12 ?M1 Krebsnebel“ in der Google-Buchsuche).
  89. a b Ronald Stoyan , Stefan Binnewies, Susanne Friedrich: Atlas der Messier-Objekte . 2006, ISBN 3-938469-07-2 , S.   368 . Hier S. 69?73
  90. Supernovarest M1 Krebsnebel ? Im polarisierten und normalen Licht. Abgerufen am 7. Februar 2020 .
  91. Brumfiel: Air force had early warning of pulsars . In: Nature . Band   448 , Nr.   7157 , 2007, S.   974?975 , doi : 10.1038/448974a , PMID 17728726 , bibcode : 2007Natur.448..974B .
  92. "Beautiful Minds: Jocelyn Bell Burnell", BBC television documentary broadcast 7. April 2010